In order to study the reliability of the empirical estimation of joint shear strength by the JRC(joint roughness coefficient)-JCS(joint compressive strength) model,natural rock joints of dif-ferent lithologic char...In order to study the reliability of the empirical estimation of joint shear strength by the JRC(joint roughness coefficient)-JCS(joint compressive strength) model,natural rock joints of dif-ferent lithologic characteristics and different sizes were selected as samples,and their shear strengths under dry and saturated conditions were measured by direct shear test and compared to those esti-mated by the JRC-JCS model.Comparison results show that for natural rock joints with joint surfaces closely matched,the average relative error of joint shear strength between empirical estimation and direct shear test is 9.9%;the reliability of the empirical estimation of joint shear strength by the JRC-JCS model is good under both dry and saturated conditions if the JRC is determined accounting for directional statistical measurements,scale effect and surface smoothing during shearing.However,for natural rock joints with joint surfaces mismatched,the average relative error of joint shear strength between empirical estimation and direct shear test is 39.9%;the reliability of empirical estimation of joint shear strength by the JRC-JCS model is questionable under both dry and saturated conditions.展开更多
Based on the triadic Koch curve,a generalized fractal model of joint profiles is establishedto simulate joint roughness.The fractal dimension of a joint profile can be directly obtained from the two pa-rameters,L~* an...Based on the triadic Koch curve,a generalized fractal model of joint profiles is establishedto simulate joint roughness.The fractal dimension of a joint profile can be directly obtained from the two pa-rameters,L~* and h~*, the average base length and average height of asperities of the joint,respectively,i,e D=log4/log[2(1+cos tan^1(2h'/L'))]This fractal dimension is strongly correlated with the value of the joint roughness coefficient (JRC). An empirical relationship is found in the form,JRC=85.2671·(D-1)~0.5679 Thus, the fractal analysis proposed provides a new method of estimating JRC values展开更多
基金supported by the National Natural Science Foundation of China (Nos. 40672186, 50809059)the Natural Science Foundation of Zhejiang Province (No. Y505008), China
文摘In order to study the reliability of the empirical estimation of joint shear strength by the JRC(joint roughness coefficient)-JCS(joint compressive strength) model,natural rock joints of dif-ferent lithologic characteristics and different sizes were selected as samples,and their shear strengths under dry and saturated conditions were measured by direct shear test and compared to those esti-mated by the JRC-JCS model.Comparison results show that for natural rock joints with joint surfaces closely matched,the average relative error of joint shear strength between empirical estimation and direct shear test is 9.9%;the reliability of the empirical estimation of joint shear strength by the JRC-JCS model is good under both dry and saturated conditions if the JRC is determined accounting for directional statistical measurements,scale effect and surface smoothing during shearing.However,for natural rock joints with joint surfaces mismatched,the average relative error of joint shear strength between empirical estimation and direct shear test is 39.9%;the reliability of empirical estimation of joint shear strength by the JRC-JCS model is questionable under both dry and saturated conditions.
基金the National Natural Science Foundation of China the National Basic Research Project "Nonlinear Science"
文摘Based on the triadic Koch curve,a generalized fractal model of joint profiles is establishedto simulate joint roughness.The fractal dimension of a joint profile can be directly obtained from the two pa-rameters,L~* and h~*, the average base length and average height of asperities of the joint,respectively,i,e D=log4/log[2(1+cos tan^1(2h'/L'))]This fractal dimension is strongly correlated with the value of the joint roughness coefficient (JRC). An empirical relationship is found in the form,JRC=85.2671·(D-1)~0.5679 Thus, the fractal analysis proposed provides a new method of estimating JRC values