Non-self-adjoint dynamical systems, e.g., nonholonomic systems, can admit an almost Poisson structure, which is formulated by a kind of Poisson bracket satisfying the usual properties except for the Jacobi identity. A...Non-self-adjoint dynamical systems, e.g., nonholonomic systems, can admit an almost Poisson structure, which is formulated by a kind of Poisson bracket satisfying the usual properties except for the Jacobi identity. A general theory of the almost Poisson structure is investigated based on a decompo- sition of the bracket into a sum of a Poisson one and an almost Poisson one. The corresponding rela- tion between Poisson structure and symplectic structure is proved, making use of Jacobiizer and symplecticizer. Based on analysis of pseudo-symplectic structure of constraint submanifold of Chaplygin’s nonholonomic systems, an almost Poisson bracket for the systems is constructed and decomposed into a sum of a canonical Poisson one and an almost Poisson one. Similarly, an almost Poisson structure, which can be decomposed into a sum of canonical one and an almost "Lie-Poisson" one, is also constructed on an affine space with torsion whose autoparallels are utilized to describe the free motion of some non-self-adjoint systems. The decomposition of the almost Poisson bracket di- rectly leads to a decomposition of a dynamical vector field into a sum of usual Hamiltionian vector field and an almost Hamiltonian one, which is useful to simplifying the integration of vector fields.展开更多
1 Introduction Jacobi forms are the generalization of Jacobi theta series and the coefficients of the Fourier-Jacobi expansion of a Siegel modular form. The theory develops systematically in recent years and has many ...1 Introduction Jacobi forms are the generalization of Jacobi theta series and the coefficients of the Fourier-Jacobi expansion of a Siegel modular form. The theory develops systematically in recent years and has many interesting applications in theory of modular forms and number theory.展开更多
The so_called Jacobi_Eisenstein series is defined by E k, S (z, w)=∑y∈J ∞\J (1, j) Z 1|k, Sy(z, w) . The Fourier coefficients of E k, S is determined completely. The theorem extends the results of Eichler and Zagie...The so_called Jacobi_Eisenstein series is defined by E k, S (z, w)=∑y∈J ∞\J (1, j) Z 1|k, Sy(z, w) . The Fourier coefficients of E k, S is determined completely. The theorem extends the results of Eichler and Zagier to the case of general index matrices.展开更多
In this paper, new basic functions, which are composed of three basic Jacobi elliptic functions, are chosen as components of finite expansion. This finite expansion can be taken as an ansatz and applied to solve nonli...In this paper, new basic functions, which are composed of three basic Jacobi elliptic functions, are chosen as components of finite expansion. This finite expansion can be taken as an ansatz and applied to solve nonlinear wave equations. As an example, mKdV equation is solved, and more new rational form solutions are derived, such as periodic solutions of rational form, solitary wave solutions of rational form, and so on.展开更多
A simple barotropic potential vorticity equation with the influence of dissipation is applied to investigate the nonlinear Rossby wave in a shear flow in the tropical atmophere. By the reduetive perturbation method, w...A simple barotropic potential vorticity equation with the influence of dissipation is applied to investigate the nonlinear Rossby wave in a shear flow in the tropical atmophere. By the reduetive perturbation method, we derive the rotational KdV (rKdV for short) equation. And then, with the help of Jaeobi elliptie functions, we obtain various periodic structures for these Rossby waves. It is shown that dissipation is very important for these periodic structures of rational form.展开更多
For every Jacobi form of Shimura type over H × ?, a system of L-functions associated to it is given. These L-functions can be analytically continued to the whole complex plane and satisfy a kind of functional equ...For every Jacobi form of Shimura type over H × ?, a system of L-functions associated to it is given. These L-functions can be analytically continued to the whole complex plane and satisfy a kind of functional equation. As a consequence, Hecke’s inverse theorem on modular forms is extended to the context of Jacobi forms with Shimura type.展开更多
The new rational form solutions to the elliptic equation are shown, and then these solutions to the elliptic equation are taken as a transformation and applied to solve nonlinear coupled wave equations. It is shown th...The new rational form solutions to the elliptic equation are shown, and then these solutions to the elliptic equation are taken as a transformation and applied to solve nonlinear coupled wave equations. It is shown that more novel kinds of solutions are derived, such as periodic solutions of rational form, solitary wave solutions of rational form,and so on.展开更多
For any positive integers n and m, H_(n,m):= H_n× C^(m,n) is called the Siegel-Jacobi space, with the Jacobi group acting on it. The Jacobi forms are defined on this space. We compute the Chern connection of the ...For any positive integers n and m, H_(n,m):= H_n× C^(m,n) is called the Siegel-Jacobi space, with the Jacobi group acting on it. The Jacobi forms are defined on this space. We compute the Chern connection of the Siegel-Jacobi space and use it to obtain derivations of Jacobi forms. Using these results, we construct a series of invariant differential operators for Siegel-Jacobi forms. Also two kinds of Maass-Shimura type differential operators for H_(n,m) are obtained.展开更多
This paper verifies the singularity conjecture for Jacobi forms with higher degree in some typical cases, and gives constructions for the Jacobi cusp forms whose Fourier coefficients can be expressed by some kind of R...This paper verifies the singularity conjecture for Jacobi forms with higher degree in some typical cases, and gives constructions for the Jacobi cusp forms whose Fourier coefficients can be expressed by some kind of Rankin-type L-series.展开更多
We use Hopf-Lax formula to study local regularity of solution to Hamilton- Jacobi (HJ) equations of multi-dimensional space variables with convex Hamiltonian. Then we give the large time generic form of the solution...We use Hopf-Lax formula to study local regularity of solution to Hamilton- Jacobi (HJ) equations of multi-dimensional space variables with convex Hamiltonian. Then we give the large time generic form of the solution to HJ equation, i.e. for most initial data there exists a constant T 〉 0, which depends only on the Hamiltonian and initial datum, for t 〉 T the solution of the IVP (1.1) is smooth except for ~ smooth n-dimensional hypersurface, across which Du(x, t) is discontinuous. And we show that the hypersurface 1 tends asymptotically to a given hypersurface with rate t-1/4.展开更多
Let M be a real hypersurface of a complex space form with almost contact metric structure (φ,ξ,η,g). In this paper, we prove that if the structure Jacobi operator Rξ=(·,ξ) ξ is φ▽ξξ-parallel and Rξ com...Let M be a real hypersurface of a complex space form with almost contact metric structure (φ,ξ,η,g). In this paper, we prove that if the structure Jacobi operator Rξ=(·,ξ) ξ is φ▽ξξ-parallel and Rξ commute with the shape operator, then M is a Hopf hypersurface. Further, if Rξ is φ▽ξξ-parallel and Rξ commute with the Ricci tensor, then M is also a Hopf hypersurface provided that TrRξ is constant.展开更多
基金Supported by the National Natural Science Foundation of China (Grant Nos. 10872084, 10472040)the Outstanding Young Talents Training Fund of Liaoning Province of China (Grant No. 3040005)the Research Program of Higher Educa-tion of Liaoning Province of China (Grant No. 2008S098)
文摘Non-self-adjoint dynamical systems, e.g., nonholonomic systems, can admit an almost Poisson structure, which is formulated by a kind of Poisson bracket satisfying the usual properties except for the Jacobi identity. A general theory of the almost Poisson structure is investigated based on a decompo- sition of the bracket into a sum of a Poisson one and an almost Poisson one. The corresponding rela- tion between Poisson structure and symplectic structure is proved, making use of Jacobiizer and symplecticizer. Based on analysis of pseudo-symplectic structure of constraint submanifold of Chaplygin’s nonholonomic systems, an almost Poisson bracket for the systems is constructed and decomposed into a sum of a canonical Poisson one and an almost Poisson one. Similarly, an almost Poisson structure, which can be decomposed into a sum of canonical one and an almost "Lie-Poisson" one, is also constructed on an affine space with torsion whose autoparallels are utilized to describe the free motion of some non-self-adjoint systems. The decomposition of the almost Poisson bracket di- rectly leads to a decomposition of a dynamical vector field into a sum of usual Hamiltionian vector field and an almost Hamiltonian one, which is useful to simplifying the integration of vector fields.
文摘1 Introduction Jacobi forms are the generalization of Jacobi theta series and the coefficients of the Fourier-Jacobi expansion of a Siegel modular form. The theory develops systematically in recent years and has many interesting applications in theory of modular forms and number theory.
文摘The so_called Jacobi_Eisenstein series is defined by E k, S (z, w)=∑y∈J ∞\J (1, j) Z 1|k, Sy(z, w) . The Fourier coefficients of E k, S is determined completely. The theorem extends the results of Eichler and Zagier to the case of general index matrices.
基金The project supported by National Natural Science Foundation of China under Grant No.40305006the Ministry of Science and Technology of China through Special Public Welfare Project under Grant No.2002DIB20070
文摘In this paper, new basic functions, which are composed of three basic Jacobi elliptic functions, are chosen as components of finite expansion. This finite expansion can be taken as an ansatz and applied to solve nonlinear wave equations. As an example, mKdV equation is solved, and more new rational form solutions are derived, such as periodic solutions of rational form, solitary wave solutions of rational form, and so on.
基金The project supports by National Natural Science Foundation of China under Grant No. 40233033
文摘A simple barotropic potential vorticity equation with the influence of dissipation is applied to investigate the nonlinear Rossby wave in a shear flow in the tropical atmophere. By the reduetive perturbation method, we derive the rotational KdV (rKdV for short) equation. And then, with the help of Jaeobi elliptie functions, we obtain various periodic structures for these Rossby waves. It is shown that dissipation is very important for these periodic structures of rational form.
基金The author would like to thank the Mathematical Department of the University of Hong Kong, where this paper was finished, for its hospitality. This work was supported by the National Natural Science Foundation of China (Grant No.19871013).
文摘For every Jacobi form of Shimura type over H × ?, a system of L-functions associated to it is given. These L-functions can be analytically continued to the whole complex plane and satisfy a kind of functional equation. As a consequence, Hecke’s inverse theorem on modular forms is extended to the context of Jacobi forms with Shimura type.
文摘The new rational form solutions to the elliptic equation are shown, and then these solutions to the elliptic equation are taken as a transformation and applied to solve nonlinear coupled wave equations. It is shown that more novel kinds of solutions are derived, such as periodic solutions of rational form, solitary wave solutions of rational form,and so on.
基金supported by National Natural Science Foundation of China(Grant No.11271212)
文摘For any positive integers n and m, H_(n,m):= H_n× C^(m,n) is called the Siegel-Jacobi space, with the Jacobi group acting on it. The Jacobi forms are defined on this space. We compute the Chern connection of the Siegel-Jacobi space and use it to obtain derivations of Jacobi forms. Using these results, we construct a series of invariant differential operators for Siegel-Jacobi forms. Also two kinds of Maass-Shimura type differential operators for H_(n,m) are obtained.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 19871013).
文摘This paper verifies the singularity conjecture for Jacobi forms with higher degree in some typical cases, and gives constructions for the Jacobi cusp forms whose Fourier coefficients can be expressed by some kind of Rankin-type L-series.
基金supported by National Natural Science Foundation of China (10871133,11071246 and 11101143)Fundamental Research Funds of the Central Universities (09QL48)
文摘We use Hopf-Lax formula to study local regularity of solution to Hamilton- Jacobi (HJ) equations of multi-dimensional space variables with convex Hamiltonian. Then we give the large time generic form of the solution to HJ equation, i.e. for most initial data there exists a constant T 〉 0, which depends only on the Hamiltonian and initial datum, for t 〉 T the solution of the IVP (1.1) is smooth except for ~ smooth n-dimensional hypersurface, across which Du(x, t) is discontinuous. And we show that the hypersurface 1 tends asymptotically to a given hypersurface with rate t-1/4.
文摘Let M be a real hypersurface of a complex space form with almost contact metric structure (φ,ξ,η,g). In this paper, we prove that if the structure Jacobi operator Rξ=(·,ξ) ξ is φ▽ξξ-parallel and Rξ commute with the shape operator, then M is a Hopf hypersurface. Further, if Rξ is φ▽ξξ-parallel and Rξ commute with the Ricci tensor, then M is also a Hopf hypersurface provided that TrRξ is constant.