The purpose of this paper is to study the Mann and Ishikawa iterative approximation of solutions for m_accretive operator equations in Banach spaces. The results presented in this paper extend and improve some authors...The purpose of this paper is to study the Mann and Ishikawa iterative approximation of solutions for m_accretive operator equations in Banach spaces. The results presented in this paper extend and improve some authors' recent results.展开更多
Some necessary and sufficient conditions for convergence of Ishikawa Mann and steepest descent iterative sequence for accretive and pseudo-contractive type mapping in Banach spaces were obtained. The results improve, ...Some necessary and sufficient conditions for convergence of Ishikawa Mann and steepest descent iterative sequence for accretive and pseudo-contractive type mapping in Banach spaces were obtained. The results improve, extend and include some recent results.展开更多
Using the new analysis techniques, the problem of iterative approximation of solutions of the equation for Lipschitz phi-strongly accretive operators and of fixed points for Lipschitz phi-strongly pseudo-contractive m...Using the new analysis techniques, the problem of iterative approximation of solutions of the equation for Lipschitz phi-strongly accretive operators and of fixed points for Lipschitz phi-strongly pseudo-contractive mappings are discussed. The main results of this paper improve and extend the corresponding results obtained by Chang, Chidume, Deng, Ding, Tan-Xu and Osilike.展开更多
文摘The purpose of this paper is to study the Mann and Ishikawa iterative approximation of solutions for m_accretive operator equations in Banach spaces. The results presented in this paper extend and improve some authors' recent results.
文摘Some necessary and sufficient conditions for convergence of Ishikawa Mann and steepest descent iterative sequence for accretive and pseudo-contractive type mapping in Banach spaces were obtained. The results improve, extend and include some recent results.
文摘Using the new analysis techniques, the problem of iterative approximation of solutions of the equation for Lipschitz phi-strongly accretive operators and of fixed points for Lipschitz phi-strongly pseudo-contractive mappings are discussed. The main results of this paper improve and extend the corresponding results obtained by Chang, Chidume, Deng, Ding, Tan-Xu and Osilike.