Hydrographic data from eleven 1986 - 1991 cruises at zonal sections near 8°N from the Philippine coast to 130°E were used to examine thermohaline smictim and waer mass properties of the western boundary cnrr...Hydrographic data from eleven 1986 - 1991 cruises at zonal sections near 8°N from the Philippine coast to 130°E were used to examine thermohaline smictim and waer mass properties of the western boundary cnrrents there, especially those of the Mindanao Underconnt (MUC). The finding that the MLC consisted of two water masses with salinity of M.6 at 26.9 σt and 34.52 at 27. 2 σt which were remnants of the lower part of the southern Pacific Subtropical Waer (SPSW) and of the Antarctic Intermediate Water (AAIW) of South Pacific origin, respectively, showed that the MUC was not a local transient but originaed elsewhere. As the MUC flowed from 7 .5°N to 8°N, part of it carrying the SPSW turns anticyclonically and eastward. The Northem Pacilic Intermediate Watr (NPIW) often joins the MUC, which suggests that the NPIW carried by the MC partly to northward as a result of the shear between the MC and the MUC or other proceesses. The shear instability provides the energy for the irregular fluctuation of the MUC.展开更多
Although the simple adaptive control (SAC) is widely studied both in theory and application in flexible space structure control and other control problems, it is restricted by the almost strictly positive real (ASP...Although the simple adaptive control (SAC) is widely studied both in theory and application in flexible space structure control and other control problems, it is restricted by the almost strictly positive real (ASPR) conditions. In most practical control problems, the ASPR conditions are not satisfied. Therefore, based on the SAC theory, this paper proposes a backstepping simple adaptive control algorithm which suits the system with arbitrary relative degree with no need of parallel feed forward compensa- tor. The proposed control algorithm consists of decomposition of the arbitrary relative degree system into a known subsystem and an unknown ASPR subsystem which are connected in cascade, design of constant output feedback controller for the known subsystem, and implementation of backstepping method and SAC of the unknown ASPR subsystem. Inheriting the characteristics of the SAC, this method can be adaptive online for the parameter uncertainties. Then, the application of the proposed controller to large flexible space structure with collocated sensors and actuators is studied, and the simulation results validate the proposed controller. It is a new strategy to apply the classical SAC to high relative degree plants.展开更多
Objective: By observing body surface temperature variation of the intermediate structures of the Lung(Fei) and Large Intestine(Dachang) exterior-interior relationship in asthmatic patients, to investigate the patholog...Objective: By observing body surface temperature variation of the intermediate structures of the Lung(Fei) and Large Intestine(Dachang) exterior-interior relationship in asthmatic patients, to investigate the pathological response on the pathway of channels and to substantiate the objective existence of the intermediary structures. Methods: The study included 60 subjects meeting the bronchial asthma inclusion criteria(experimental group) and 60 healthy subjects(normal control group). ATIR-M301 infrared thermal imaging device was used for detecting body surface temperature of the subjects and collecting the infrared thermal images. The temperature values of the intermediate structures of Lung and Large Intestine exterior-interior relationship [throat, Quepen, elbow, nose, Lieque(LU 7), Pianli(LI 6)], control areas(0.2 cm lateral to the above structures) and Yintang(EX-HN 3) were measured on the infrared thermal image by infrared imaging system. Then, the above temperature values were compared and analyzed within and between two groups. Results: There were insignificant differences between the temperature on the left and right sides of the intermediate structures(Quepen, elbow, LU 7, LI 6) in normal control group(P>0.05). Except for that of Quepen, there were insignificant differences between the temperature of the intermediate structures and their corresponding control areas in normal control group(P>0.05). In the experimental group, the temperature on the left and right sides of the intermediate structures(Quepen, elbow, LU 7, LI 6) showed statistically significant differences(P<0.05 or P<0.01); the temperature difference between intermediate structure(throat, Quepen, elbow, nose, LI 6) and their respective control areas were also significant(P<0.05 or P<0.01). The temperature of the intermediate structures(throat, Quepen, elbow, LU7, LI 6) between the experimental group and normal control group showed significant differences(P<0.05 or P<0.01). Conclusions: This study is an initial step to validate the objective 展开更多
One of the major challenges to develop "intermediate temperature" solid oxide fuel cells is finding a novel cathode material, which can meet the following requirements: (1) high electronic conductivity; (2) ...One of the major challenges to develop "intermediate temperature" solid oxide fuel cells is finding a novel cathode material, which can meet the following requirements: (1) high electronic conductivity; (2) chemical compatibility with the electrolyte; (3) a matched thermal expansion coefficient (TEC); (4) stability in a wide range of oxygen partial pressure; and (5) high catalytic activity for the oxygen reduction reaction (ORR). In this short review, a survey of these requirements for K2NiF4-type material with the formula Ln2MO4, Ln = La, Pr, Nd, Sm; M = Ni, Cu, Fe, Co, Mn, is presented. The composition-dependent TEC, electrical conductivity and oxygen transport property are considered. The Ln2MO4 materials exhibit improved chemical stability and compatibility with most of the traditional electrolytes. The complete fuel cells integrated with Ln2MO4 materials as cathodes show promising results. Furthermore, these materials are considered as cathodes of protonic ceramic fuel cell (PCFC), and/or anodes of high temperature steam electrolysis (HTSE). First results show excellent performances. The versatility of these Ln2MO4 materials is explained on the basis of structural features and the ability to accommodate oxygen non-stoichiometry.展开更多
ABSTRACT Organic polymer solar cells (PSCs) have attracted increasing attention due to light weight, low cost, flexibility and roll-to-roll manufacturing. However, the limited light harvest range of the photoactive ...ABSTRACT Organic polymer solar cells (PSCs) have attracted increasing attention due to light weight, low cost, flexibility and roll-to-roll manufacturing. However, the limited light harvest range of the photoactive layer greatly restrains the power conversion efficiency (PCE) enhancement. In order to expand the light absorption range and further enhance the PCE of the PSCs, tandem structures have been designed and demonstrated. In tandem solar cell, the intermediate layer (IML) plays a critical role in physically and electrically connection of the two subcells. Herein, we apply titanium (diisopropoxide) bis(2,4-pentanedionate) (TIPD) as both electrode modification layer and intermediate layer to investigate the feasibility in inverted tandem polymer solar cells. The same photoactive layers of PTB7-Th:PC71BM are adopted in both front and rear subcells to simplify the evaluation of effectiveness of TIPD layer in tandem structures. By modulating the treatment condition of IML and the thickness of photoactive layer, efficient inverted tandem PSCs have been achieved with minimized voltage loss and excellent charge transportation, giving a best Voc of 1.54 V, which is almost two times that of the single bulk heterojunction (BHJ)-PSC (0.78 V) and an enhanced PCE up to 8.11%.展开更多
文摘Hydrographic data from eleven 1986 - 1991 cruises at zonal sections near 8°N from the Philippine coast to 130°E were used to examine thermohaline smictim and waer mass properties of the western boundary cnrrents there, especially those of the Mindanao Underconnt (MUC). The finding that the MLC consisted of two water masses with salinity of M.6 at 26.9 σt and 34.52 at 27. 2 σt which were remnants of the lower part of the southern Pacific Subtropical Waer (SPSW) and of the Antarctic Intermediate Water (AAIW) of South Pacific origin, respectively, showed that the MUC was not a local transient but originaed elsewhere. As the MUC flowed from 7 .5°N to 8°N, part of it carrying the SPSW turns anticyclonically and eastward. The Northem Pacilic Intermediate Watr (NPIW) often joins the MUC, which suggests that the NPIW carried by the MC partly to northward as a result of the shear between the MC and the MUC or other proceesses. The shear instability provides the energy for the irregular fluctuation of the MUC.
基金National Natural Science Foundation of China(10902003)
文摘Although the simple adaptive control (SAC) is widely studied both in theory and application in flexible space structure control and other control problems, it is restricted by the almost strictly positive real (ASPR) conditions. In most practical control problems, the ASPR conditions are not satisfied. Therefore, based on the SAC theory, this paper proposes a backstepping simple adaptive control algorithm which suits the system with arbitrary relative degree with no need of parallel feed forward compensa- tor. The proposed control algorithm consists of decomposition of the arbitrary relative degree system into a known subsystem and an unknown ASPR subsystem which are connected in cascade, design of constant output feedback controller for the known subsystem, and implementation of backstepping method and SAC of the unknown ASPR subsystem. Inheriting the characteristics of the SAC, this method can be adaptive online for the parameter uncertainties. Then, the application of the proposed controller to large flexible space structure with collocated sensors and actuators is studied, and the simulation results validate the proposed controller. It is a new strategy to apply the classical SAC to high relative degree plants.
基金Supported by National Basic Research and Development Program(973 Program,No.2009CB522708)
文摘Objective: By observing body surface temperature variation of the intermediate structures of the Lung(Fei) and Large Intestine(Dachang) exterior-interior relationship in asthmatic patients, to investigate the pathological response on the pathway of channels and to substantiate the objective existence of the intermediary structures. Methods: The study included 60 subjects meeting the bronchial asthma inclusion criteria(experimental group) and 60 healthy subjects(normal control group). ATIR-M301 infrared thermal imaging device was used for detecting body surface temperature of the subjects and collecting the infrared thermal images. The temperature values of the intermediate structures of Lung and Large Intestine exterior-interior relationship [throat, Quepen, elbow, nose, Lieque(LU 7), Pianli(LI 6)], control areas(0.2 cm lateral to the above structures) and Yintang(EX-HN 3) were measured on the infrared thermal image by infrared imaging system. Then, the above temperature values were compared and analyzed within and between two groups. Results: There were insignificant differences between the temperature on the left and right sides of the intermediate structures(Quepen, elbow, LU 7, LI 6) in normal control group(P>0.05). Except for that of Quepen, there were insignificant differences between the temperature of the intermediate structures and their corresponding control areas in normal control group(P>0.05). In the experimental group, the temperature on the left and right sides of the intermediate structures(Quepen, elbow, LU 7, LI 6) showed statistically significant differences(P<0.05 or P<0.01); the temperature difference between intermediate structure(throat, Quepen, elbow, nose, LI 6) and their respective control areas were also significant(P<0.05 or P<0.01). The temperature of the intermediate structures(throat, Quepen, elbow, LU7, LI 6) between the experimental group and normal control group showed significant differences(P<0.05 or P<0.01). Conclusions: This study is an initial step to validate the objective
基金supported by the National Natural Science Foundation of China (51072048)Research Project of New Century Excellent Talents in University (NCET-06-0349)Heilongjiang Educational Department (GZ09A204, 1152G027, 11531274 & 11531285)
文摘One of the major challenges to develop "intermediate temperature" solid oxide fuel cells is finding a novel cathode material, which can meet the following requirements: (1) high electronic conductivity; (2) chemical compatibility with the electrolyte; (3) a matched thermal expansion coefficient (TEC); (4) stability in a wide range of oxygen partial pressure; and (5) high catalytic activity for the oxygen reduction reaction (ORR). In this short review, a survey of these requirements for K2NiF4-type material with the formula Ln2MO4, Ln = La, Pr, Nd, Sm; M = Ni, Cu, Fe, Co, Mn, is presented. The composition-dependent TEC, electrical conductivity and oxygen transport property are considered. The Ln2MO4 materials exhibit improved chemical stability and compatibility with most of the traditional electrolytes. The complete fuel cells integrated with Ln2MO4 materials as cathodes show promising results. Furthermore, these materials are considered as cathodes of protonic ceramic fuel cell (PCFC), and/or anodes of high temperature steam electrolysis (HTSE). First results show excellent performances. The versatility of these Ln2MO4 materials is explained on the basis of structural features and the ability to accommodate oxygen non-stoichiometry.
文摘ABSTRACT Organic polymer solar cells (PSCs) have attracted increasing attention due to light weight, low cost, flexibility and roll-to-roll manufacturing. However, the limited light harvest range of the photoactive layer greatly restrains the power conversion efficiency (PCE) enhancement. In order to expand the light absorption range and further enhance the PCE of the PSCs, tandem structures have been designed and demonstrated. In tandem solar cell, the intermediate layer (IML) plays a critical role in physically and electrically connection of the two subcells. Herein, we apply titanium (diisopropoxide) bis(2,4-pentanedionate) (TIPD) as both electrode modification layer and intermediate layer to investigate the feasibility in inverted tandem polymer solar cells. The same photoactive layers of PTB7-Th:PC71BM are adopted in both front and rear subcells to simplify the evaluation of effectiveness of TIPD layer in tandem structures. By modulating the treatment condition of IML and the thickness of photoactive layer, efficient inverted tandem PSCs have been achieved with minimized voltage loss and excellent charge transportation, giving a best Voc of 1.54 V, which is almost two times that of the single bulk heterojunction (BHJ)-PSC (0.78 V) and an enhanced PCE up to 8.11%.