Mass transfer enhancement of gas absorption by adding a dispersed organic phase has been studied in this work. Various dispersed organic phases (heptanol, octanol, isoamyl alcohol, heptane, octane, and isooctane) we...Mass transfer enhancement of gas absorption by adding a dispersed organic phase has been studied in this work. Various dispersed organic phases (heptanol, octanol, isoamyl alcohol, heptane, octane, and isooctane) were tested respectively in the experiment. According to the theoretical model and experimental data, the overall volumetric mass transfer coefficient and enhancement factor were obtained under different dispersed organic phase volume fraction and stirring speed. The experimental results indicate that gas-liquid mass transfer is enhanced at different level by adding a dispersed organic phase. The best performance of enhancement were achieved with the dispersed organic phase volumetric fraction of 5% and under an intermediate stirring speed of 670 r·min^-1. Among the organic phases tested in the experiment, alcohols show better performance, which gave 20% higher enhance-ment of overall volumetric mass transfer coefficient than adding alkanes.展开更多
The extraction kinetics of Ce(Ⅳ) and Ce(Ⅳ)-F^- mixture systems from sulfuric solutions to n-heptane solution containing Bif-ILE[A336][P204]([trialkylmethylammonium][di-2-ethylhewanxylphosphinate]) with a const...The extraction kinetics of Ce(Ⅳ) and Ce(Ⅳ)-F^- mixture systems from sulfuric solutions to n-heptane solution containing Bif-ILE[A336][P204]([trialkylmethylammonium][di-2-ethylhewanxylphosphinate]) with a constant interfacial area cell with laminar flow were studied,just to elucidate the extraction mechanism and the mass transfer models.The data were analyzed in terms of pseudo-first-order constants.The effects of stirring speed,specific interfacial area and temperature on the extraction rate in both systems were discussed,suggesting that the extractions were mixed bulk phases-interfacial control process.Supported by the experimental data,the corresponding rate equations for Ce(Ⅳ) extraction system and Ce(Ⅳ)-F^- mixture extraction system were obtained.The experimental results indicated the rate-controlling step.The kinetics model was deduced from the rate-controlling step and consistent with the rate equation.展开更多
The improvement in the efficiency of inverted perovskite solar cells(PSCs)is significantly limited by undesirable contact at the NiO_(x)/perovskite interface.In this study,a novel microstructure-control technology is ...The improvement in the efficiency of inverted perovskite solar cells(PSCs)is significantly limited by undesirable contact at the NiO_(x)/perovskite interface.In this study,a novel microstructure-control technology is proposed for fabrication of porous NiO_(x)films using Pluronic P123 as the structure-directing agent and acetylacetone(AcAc)as the coordination agent.The synthesized porous NiO_(x)films enhanced the hole extraction efficiency and reduced recombination defects at the NiO_(x)/perovskite interface.Consequently,without any modification,the power conversion efficiency(PCE)of the PSC with MAPbl_(3)as the absorber layer improved from 16.50%to 19.08%.Moreover,the PCE of the device composed of perovskite Cs0.05(MA_(0.15)FA_(0.85))_(0.95)Pb(I_(0.85)Br_(0.15))_(3)improved from 17.49%to 21.42%.Furthermore,the application of the fabricated porous NiO_(x)on fluorine-doped tin oxide(FTO)substrates enabled the fabrication of large-area PSCs(1.2 cm^(2))with a PCE of 19.63%.This study provides a novel strategy for improving the contact at the NiO_(x)/perovskite interface for the fabrication of high-performance large-area perovskite solar cells.展开更多
Micro-interface intensified reactor(MIR)can be applied in series/parallel in the absorption of CO_(2)in industrial gases by Na_(2)CO_(3)due to the ability to produce large numbers of stable microbubbles.This work focu...Micro-interface intensified reactor(MIR)can be applied in series/parallel in the absorption of CO_(2)in industrial gases by Na_(2)CO_(3)due to the ability to produce large numbers of stable microbubbles.This work focuses on the variation pattern of mass transfer characteristics parameters of the reaction gas in Na_(2)CO_(3) solution under the influence of different solution properties and operating parameters in the reaction of CO_(2)absorption by Na2CO3.The mass transfer characteristics parameters include bubble Sauter mean diameter,gas holdup,interfacial area,liquid side mass transfer coefficient,and liquid side volume mass transfer coefficient kLa.The solution properties and operating parameters include Na2CO3 concentration(0.05–2.0 mol·L^(-1)),superficial gas velocity(0.00221–0.01989 m·s^(-1)),superficial liquid velocity(0.00332–0.02984 m·s^(-1)),and ionic strength(1.42456–1.59588 mol·kg^(-1)).And volumetric mass transfer coeffi-cients kLa and superficial reaction rates r of the MIR and the bubble column reactor are compared in the reaction of sodium carbonate absorption of carbon dioxide,and the former shows a greater improvement under different solution properties and operating parameters.The enhanced role of MIR in mass transfer in non-homogeneous reactions is verified and the feasibility of industrial practical applications of MIR is demonstrated.展开更多
Organic solar cells(OSCs)have reached an outstanding certified power conversion efficiency(PCE)of over 19%in single junction and 20%in tandem architecture design.Such high PCEs have emerged with outstanding Y-shaped Y...Organic solar cells(OSCs)have reached an outstanding certified power conversion efficiency(PCE)of over 19%in single junction and 20%in tandem architecture design.Such high PCEs have emerged with outstanding Y-shaped Y6 non-fullerene acceptors(NFAs),together with PM6 electron donor polymers.PCEs are on the rise for small-area OSCs.However,large-area OSC sub-modules are still unable to achieve such high PCEs,and the highest certified PCE reported so far is∼12%having an area of 58 cm2.To fabricate efficient large-area OSCs,new custom-designed NFAs for large-area systems are imminent along with improvements in the sub-module fabrication platforms.Moreover,the search for stable yet efficient OSCs is still in progress.In this review,progress in small-area OSCs is presented with reference to the advancement in the chemical structure of NFAs and donor polymers.Finally,the life-cycle assessment of OSCs is presented and the energy payback time of the efficient and stable OSCs is discussed and lastly,an outlook for the OSCs is given.展开更多
Study on gas–liquid flow in stirred tank with two combinations of dual-impeller(six-bent-bladed turbine(6BT)+six-inclined-blade down-pumping turbine(6 ITD),the six-bent-bladed turbine(6BT)+six-inclinedblade up-pumpin...Study on gas–liquid flow in stirred tank with two combinations of dual-impeller(six-bent-bladed turbine(6BT)+six-inclined-blade down-pumping turbine(6 ITD),the six-bent-bladed turbine(6BT)+six-inclinedblade up-pumping turbine(6ITU))was conducted using computational fluid dynamics(CFD)and population balance model(PBM)(CFD-PBM)coupled model.The local bubble size was captured by particle image velocimetry(PIV)measurement.The gas holdup,bubble size distribution and gas–liquid interfacial area were explored at different conditions through numerical simulation.The results showed that the 4 mm bubbles accounted for the largest proportion of 33%at the gas flow rates Q=0.76 m^(3)·h^(-1) and 22%at Q=1.52 m^(3)·h^(-1) for combined impeller of 6BT+6ITU,while the bubbles of 4.7 mm and 5.5 mm were the largest proportion for 6BT+6ITD combination,i.e.25%at Q=0.76 m^(3)·h^(-1) and 22%at Q=1.52 m^(3)·h^(-1),respectively,which indicated that 6BT+6ITU could reduce bubble size effectively and promote gas dispersion.In addition,the gas holdup around impellers was increased obviously with the speed compared with gas flow rate.So it was concluded that 6ITU impeller could be more conductive to the bubble dispersion with more uniform bubble size,which embodied the advantages of 6BT+6ITU combination in gas–liquid mixing.展开更多
The hydrodynamics and mass transfer characteristics of a lab-scale jet bubbling reactor(JBR)including the gas holdup,volumetric mass transfer coefficient and specific interfacial area were assessed experimentally inve...The hydrodynamics and mass transfer characteristics of a lab-scale jet bubbling reactor(JBR)including the gas holdup,volumetric mass transfer coefficient and specific interfacial area were assessed experimentally investigating the influence of temperature,pH and superficial gas velocity.The reactor diameter and height were 11 and 30 cm,respectively.It was equipped with a single sparger,operating at atmospheric pressure,20 and 40℃,and two pH values of 3 and 6.The height of the liquid was 23 cm,while the superficial gas velocity changed within 0.010-0.040 m·s^(-1)range.Experiments were conducted with pure oxygen as the gas phase and saturated lime solution as the liquid phase.The liquid-side volumetric mass transfer coefficient was determined under unsteady-state oxygen absorption in a saturated lime solution.The gas holdup was calculated based on the liquid height change,while the specific interfacial area was obtained by a physical method based on the bubble size distribution(BSD)in different superficial gas velocities.The results indicated that at the same temperature but different pH,the gas holdup variation was negligible,while the liquid-side volumetric mass transfer coefficient at the pH value of 6 was higher than that at the pH=3.At a constant pH but different temperatures,the gas holdup and the liquid-side volumetric mass transfer coefficients at 40℃were higher than that of the same at 20℃.A reasonable and appropriate estimation of the liquid-side volumetric mass transfer coefficient(kla)in a pilot-scale JBR was provided which can be applied to the design and scale-up of JBRs.展开更多
基金Supported by the National Natural Science Foundation of China (20776086)
文摘Mass transfer enhancement of gas absorption by adding a dispersed organic phase has been studied in this work. Various dispersed organic phases (heptanol, octanol, isoamyl alcohol, heptane, octane, and isooctane) were tested respectively in the experiment. According to the theoretical model and experimental data, the overall volumetric mass transfer coefficient and enhancement factor were obtained under different dispersed organic phase volume fraction and stirring speed. The experimental results indicate that gas-liquid mass transfer is enhanced at different level by adding a dispersed organic phase. The best performance of enhancement were achieved with the dispersed organic phase volumetric fraction of 5% and under an intermediate stirring speed of 670 r·min^-1. Among the organic phases tested in the experiment, alcohols show better performance, which gave 20% higher enhance-ment of overall volumetric mass transfer coefficient than adding alkanes.
基金Project (2012CBA01202) supported by the National Basic Research Program of ChinaProject (51174184) supported by the National Natural Science Foundation of China+2 种基金Project (KGZD-EW-201-1) supported by the Key Research Program of the Chinese Academy of SciencesProject (BK2013030) supported by Science and Technology Plan of Nantong City,ChinaProject (RERU2014016) supported by Open Subject of Changchun Institute of Applied Chemistry,Chinese Academy of Sciences,China
文摘The extraction kinetics of Ce(Ⅳ) and Ce(Ⅳ)-F^- mixture systems from sulfuric solutions to n-heptane solution containing Bif-ILE[A336][P204]([trialkylmethylammonium][di-2-ethylhewanxylphosphinate]) with a constant interfacial area cell with laminar flow were studied,just to elucidate the extraction mechanism and the mass transfer models.The data were analyzed in terms of pseudo-first-order constants.The effects of stirring speed,specific interfacial area and temperature on the extraction rate in both systems were discussed,suggesting that the extractions were mixed bulk phases-interfacial control process.Supported by the experimental data,the corresponding rate equations for Ce(Ⅳ) extraction system and Ce(Ⅳ)-F^- mixture extraction system were obtained.The experimental results indicated the rate-controlling step.The kinetics model was deduced from the rate-controlling step and consistent with the rate equation.
基金supported by the National Key Research and Development Program of China(grant no.2018YFA0208701)National Natural Science Foundation of China(grant no.21773308)+6 种基金Research Funds of Renmin University of China(grant nos.2017030013,201903020,and 20XNH059)Fundamental Research Funds for Central Universities(China)supported by the Solar Energy Research Institute of Singapore(SERIS)at the National University of Singapore(NUS)supported by NUS,the National Research Foundation Singapore(NRF),the Energy Market Authority of Singapore(EMA),and the Singapore Economic Development Board(EDB)the experimental support from Suzhou Fangsheng FS-300funding from Deutsche Forschungsge-meinschaft(DFG)via Germany's Excellence Strategy-EXC 2089/1-390776260(e-conversion)as well as from TUM.solar in the context of the Bavarian Collaborative Research Project Solar Technologies Go Hybrid(SoITech)the China Scholarship Council(CSC)funding
文摘The improvement in the efficiency of inverted perovskite solar cells(PSCs)is significantly limited by undesirable contact at the NiO_(x)/perovskite interface.In this study,a novel microstructure-control technology is proposed for fabrication of porous NiO_(x)films using Pluronic P123 as the structure-directing agent and acetylacetone(AcAc)as the coordination agent.The synthesized porous NiO_(x)films enhanced the hole extraction efficiency and reduced recombination defects at the NiO_(x)/perovskite interface.Consequently,without any modification,the power conversion efficiency(PCE)of the PSC with MAPbl_(3)as the absorber layer improved from 16.50%to 19.08%.Moreover,the PCE of the device composed of perovskite Cs0.05(MA_(0.15)FA_(0.85))_(0.95)Pb(I_(0.85)Br_(0.15))_(3)improved from 17.49%to 21.42%.Furthermore,the application of the fabricated porous NiO_(x)on fluorine-doped tin oxide(FTO)substrates enabled the fabrication of large-area PSCs(1.2 cm^(2))with a PCE of 19.63%.This study provides a novel strategy for improving the contact at the NiO_(x)/perovskite interface for the fabrication of high-performance large-area perovskite solar cells.
基金Natural Science Foundation of Jiangsu Province(BK20210185)National Natural Science Foundation of China(22278202).
文摘Micro-interface intensified reactor(MIR)can be applied in series/parallel in the absorption of CO_(2)in industrial gases by Na_(2)CO_(3)due to the ability to produce large numbers of stable microbubbles.This work focuses on the variation pattern of mass transfer characteristics parameters of the reaction gas in Na_(2)CO_(3) solution under the influence of different solution properties and operating parameters in the reaction of CO_(2)absorption by Na2CO3.The mass transfer characteristics parameters include bubble Sauter mean diameter,gas holdup,interfacial area,liquid side mass transfer coefficient,and liquid side volume mass transfer coefficient kLa.The solution properties and operating parameters include Na2CO3 concentration(0.05–2.0 mol·L^(-1)),superficial gas velocity(0.00221–0.01989 m·s^(-1)),superficial liquid velocity(0.00332–0.02984 m·s^(-1)),and ionic strength(1.42456–1.59588 mol·kg^(-1)).And volumetric mass transfer coeffi-cients kLa and superficial reaction rates r of the MIR and the bubble column reactor are compared in the reaction of sodium carbonate absorption of carbon dioxide,and the former shows a greater improvement under different solution properties and operating parameters.The enhanced role of MIR in mass transfer in non-homogeneous reactions is verified and the feasibility of industrial practical applications of MIR is demonstrated.
基金the National Research Foundation of Korea(NRF)Grant funded by the Korea government(MSIT)(Grant No.2021R1A2C3008724).
文摘Organic solar cells(OSCs)have reached an outstanding certified power conversion efficiency(PCE)of over 19%in single junction and 20%in tandem architecture design.Such high PCEs have emerged with outstanding Y-shaped Y6 non-fullerene acceptors(NFAs),together with PM6 electron donor polymers.PCEs are on the rise for small-area OSCs.However,large-area OSC sub-modules are still unable to achieve such high PCEs,and the highest certified PCE reported so far is∼12%having an area of 58 cm2.To fabricate efficient large-area OSCs,new custom-designed NFAs for large-area systems are imminent along with improvements in the sub-module fabrication platforms.Moreover,the search for stable yet efficient OSCs is still in progress.In this review,progress in small-area OSCs is presented with reference to the advancement in the chemical structure of NFAs and donor polymers.Finally,the life-cycle assessment of OSCs is presented and the energy payback time of the efficient and stable OSCs is discussed and lastly,an outlook for the OSCs is given.
基金supported by the National Natural Science Foundation of China(52176040)Shandong Provincial Natural Science Foundation of China(ZR2018LE015)。
文摘Study on gas–liquid flow in stirred tank with two combinations of dual-impeller(six-bent-bladed turbine(6BT)+six-inclined-blade down-pumping turbine(6 ITD),the six-bent-bladed turbine(6BT)+six-inclinedblade up-pumping turbine(6ITU))was conducted using computational fluid dynamics(CFD)and population balance model(PBM)(CFD-PBM)coupled model.The local bubble size was captured by particle image velocimetry(PIV)measurement.The gas holdup,bubble size distribution and gas–liquid interfacial area were explored at different conditions through numerical simulation.The results showed that the 4 mm bubbles accounted for the largest proportion of 33%at the gas flow rates Q=0.76 m^(3)·h^(-1) and 22%at Q=1.52 m^(3)·h^(-1) for combined impeller of 6BT+6ITU,while the bubbles of 4.7 mm and 5.5 mm were the largest proportion for 6BT+6ITD combination,i.e.25%at Q=0.76 m^(3)·h^(-1) and 22%at Q=1.52 m^(3)·h^(-1),respectively,which indicated that 6BT+6ITU could reduce bubble size effectively and promote gas dispersion.In addition,the gas holdup around impellers was increased obviously with the speed compared with gas flow rate.So it was concluded that 6ITU impeller could be more conductive to the bubble dispersion with more uniform bubble size,which embodied the advantages of 6BT+6ITU combination in gas–liquid mixing.
基金the authors appreciate the vice-chancellor of research and technology of the University of Isfahan for supporting this work under Grant No.911401707。
文摘The hydrodynamics and mass transfer characteristics of a lab-scale jet bubbling reactor(JBR)including the gas holdup,volumetric mass transfer coefficient and specific interfacial area were assessed experimentally investigating the influence of temperature,pH and superficial gas velocity.The reactor diameter and height were 11 and 30 cm,respectively.It was equipped with a single sparger,operating at atmospheric pressure,20 and 40℃,and two pH values of 3 and 6.The height of the liquid was 23 cm,while the superficial gas velocity changed within 0.010-0.040 m·s^(-1)range.Experiments were conducted with pure oxygen as the gas phase and saturated lime solution as the liquid phase.The liquid-side volumetric mass transfer coefficient was determined under unsteady-state oxygen absorption in a saturated lime solution.The gas holdup was calculated based on the liquid height change,while the specific interfacial area was obtained by a physical method based on the bubble size distribution(BSD)in different superficial gas velocities.The results indicated that at the same temperature but different pH,the gas holdup variation was negligible,while the liquid-side volumetric mass transfer coefficient at the pH value of 6 was higher than that at the pH=3.At a constant pH but different temperatures,the gas holdup and the liquid-side volumetric mass transfer coefficients at 40℃were higher than that of the same at 20℃.A reasonable and appropriate estimation of the liquid-side volumetric mass transfer coefficient(kla)in a pilot-scale JBR was provided which can be applied to the design and scale-up of JBRs.