Nature is an information sourcebook of behaviour, function, colour and shape which can inspire visual design and invention. Studying the form and functional characteristics of a natural object can provide inspiration ...Nature is an information sourcebook of behaviour, function, colour and shape which can inspire visual design and invention. Studying the form and functional characteristics of a natural object can provide inspiration for product design and help to improve the marketability of manufactured products. The inspiration can be triggered either by direct observation or captured by three-dimensional (3D) digitising techniques to obtain superficial information (geometry and colour). An art designer often creates a concept in the form of a two-dimensional (2D) sketch while engineering methods lead to a point cloud in 3D. Each has its limitations in that the art designer commonly lacks the knowledge to build a final product from a 2D sketch and the engi- neering designer's 3D point clouds may not be very beautiful. We propose a method for Product Design from Nature (PDN), coupling aesthetic intent and geometrical characteristics, exploring the interactions between designers and nature's systems in PDN. We believe that this approach would considerably reduce the lead time and cost of product design from nature.展开更多
Biomimetics (or bionics) is the engineering discipline that constructs artificial systems using biological principles. The ideal final result in biomimetics is to create a living machine. But what are the desirable an...Biomimetics (or bionics) is the engineering discipline that constructs artificial systems using biological principles. The ideal final result in biomimetics is to create a living machine. But what are the desirable and non-desirable properties of biomimetic product? Where can natural prototypes be found? How can technical solutions be transferred from nature to technology? Can we use living nature like LEGO bricks for construction our machines? How can biology help us? What is a living machine? In biomimetic practice only some “part” (organ, part of organ, tissue) of the observed whole organism is utilized. A possible template for future super-organism extension for biomimetic methods might be drawn from experiments in holistic ecological agriculture (ecological design, permaculture, ecological engineering, etc.). The necessary translation of these rules to practical action can be achieved with the Russian Theory of Inventive Problem Solving (TRIZ), specifically adjusted to biology. Thus, permaculture, reinforced by a TRIZ conceptual framework, might provide the basis for Super-Organismic Bionics, which is hypothesized as necessary for effective ecological engineering. This hypothesis is supported by a case study-the design of a sustainable artificial nature reserve for wild pollinators as a living machine.展开更多
Morphing capability is absolutely vital for aerospace vehicle to gain predominant functions of aerodynamics, mobility and flight control while piercing and re-entering the atmosphere. However, the challenge for existi...Morphing capability is absolutely vital for aerospace vehicle to gain predominant functions of aerodynamics, mobility and flight control while piercing and re-entering the atmosphere. However, the challenge for existing aerospace vehicle remains to change its structure of nose cone agilely. This paper carries out a lot of observational experiments on honeybee's abdomen which enhances the flight characteristics of honeybee by adjusting its biomorphic shape. A morphing structure is adopted from honeybee's abdomen to improve both the axial scalability and bending properties of aerospace vehicle, which can lead to the super-maneuver flight performance. Combined with the methods of optimum design and topology, a new bionic morphing structure is proposed and applied to the design of morphing nose cone of aerospace vehicle. Furthermore, simulations are conducted to optimize the structural parameters of morphing nose cone. This concept design of biomimetic nose cone will provide an efficient way for aerospace vehicle to reduce the aerodynamic drag.展开更多
The rapid development of information and communication technologies(ICTs)and cyber-physical systems(CPSs)has paved the way for the increasing popularity of smart products.Context-awareness is an important facet of pro...The rapid development of information and communication technologies(ICTs)and cyber-physical systems(CPSs)has paved the way for the increasing popularity of smart products.Context-awareness is an important facet of product smartness.Unlike artifacts,various bio-systems are naturally characterized by their extraordinary context-awareness.Biologically inspired design(BID)is one of the most commonly employed design strategies.However,few studies have examined the BID of context-aware smart products to date.This paper presents a structured design framework to support the BID of context-aware smart products.The meaning of context-awareness is defined from the perspective of product design.The framework is developed based on the theoretical foundations of the situated function-behavior-structure ontology.A structured design process is prescribed to leverage various biological inspirations in order to support different conceptual design activities,such as problem formulation,structure reformulation,behavior reformulation,and function reformulation.Some existing design methods and emerging design tools are incorporated into the framework.A case study is presented to showcase how this framework can be followed to redesign a robot vacuum cleaner and make it more context-aware.展开更多
文摘Nature is an information sourcebook of behaviour, function, colour and shape which can inspire visual design and invention. Studying the form and functional characteristics of a natural object can provide inspiration for product design and help to improve the marketability of manufactured products. The inspiration can be triggered either by direct observation or captured by three-dimensional (3D) digitising techniques to obtain superficial information (geometry and colour). An art designer often creates a concept in the form of a two-dimensional (2D) sketch while engineering methods lead to a point cloud in 3D. Each has its limitations in that the art designer commonly lacks the knowledge to build a final product from a 2D sketch and the engi- neering designer's 3D point clouds may not be very beautiful. We propose a method for Product Design from Nature (PDN), coupling aesthetic intent and geometrical characteristics, exploring the interactions between designers and nature's systems in PDN. We believe that this approach would considerably reduce the lead time and cost of product design from nature.
文摘Biomimetics (or bionics) is the engineering discipline that constructs artificial systems using biological principles. The ideal final result in biomimetics is to create a living machine. But what are the desirable and non-desirable properties of biomimetic product? Where can natural prototypes be found? How can technical solutions be transferred from nature to technology? Can we use living nature like LEGO bricks for construction our machines? How can biology help us? What is a living machine? In biomimetic practice only some “part” (organ, part of organ, tissue) of the observed whole organism is utilized. A possible template for future super-organism extension for biomimetic methods might be drawn from experiments in holistic ecological agriculture (ecological design, permaculture, ecological engineering, etc.). The necessary translation of these rules to practical action can be achieved with the Russian Theory of Inventive Problem Solving (TRIZ), specifically adjusted to biology. Thus, permaculture, reinforced by a TRIZ conceptual framework, might provide the basis for Super-Organismic Bionics, which is hypothesized as necessary for effective ecological engineering. This hypothesis is supported by a case study-the design of a sustainable artificial nature reserve for wild pollinators as a living machine.
文摘Morphing capability is absolutely vital for aerospace vehicle to gain predominant functions of aerodynamics, mobility and flight control while piercing and re-entering the atmosphere. However, the challenge for existing aerospace vehicle remains to change its structure of nose cone agilely. This paper carries out a lot of observational experiments on honeybee's abdomen which enhances the flight characteristics of honeybee by adjusting its biomorphic shape. A morphing structure is adopted from honeybee's abdomen to improve both the axial scalability and bending properties of aerospace vehicle, which can lead to the super-maneuver flight performance. Combined with the methods of optimum design and topology, a new bionic morphing structure is proposed and applied to the design of morphing nose cone of aerospace vehicle. Furthermore, simulations are conducted to optimize the structural parameters of morphing nose cone. This concept design of biomimetic nose cone will provide an efficient way for aerospace vehicle to reduce the aerodynamic drag.
基金This work was supported in part by the project of the National Natural Science Foundation of China(51875030).
文摘The rapid development of information and communication technologies(ICTs)and cyber-physical systems(CPSs)has paved the way for the increasing popularity of smart products.Context-awareness is an important facet of product smartness.Unlike artifacts,various bio-systems are naturally characterized by their extraordinary context-awareness.Biologically inspired design(BID)is one of the most commonly employed design strategies.However,few studies have examined the BID of context-aware smart products to date.This paper presents a structured design framework to support the BID of context-aware smart products.The meaning of context-awareness is defined from the perspective of product design.The framework is developed based on the theoretical foundations of the situated function-behavior-structure ontology.A structured design process is prescribed to leverage various biological inspirations in order to support different conceptual design activities,such as problem formulation,structure reformulation,behavior reformulation,and function reformulation.Some existing design methods and emerging design tools are incorporated into the framework.A case study is presented to showcase how this framework can be followed to redesign a robot vacuum cleaner and make it more context-aware.
基金financially supported by the National Natural Science Foundation of China(52173235)Venture&Innovation Support Program for Chongqing Overseas Returnees(CX2021018)Science and Technology Innovation and Improving Project of Army Medical University(2021XJS24)。