摘要
Morphing capability is absolutely vital for aerospace vehicle to gain predominant functions of aerodynamics, mobility and flight control while piercing and re-entering the atmosphere. However, the challenge for existing aerospace vehicle remains to change its structure of nose cone agilely. This paper carries out a lot of observational experiments on honeybee's abdomen which enhances the flight characteristics of honeybee by adjusting its biomorphic shape. A morphing structure is adopted from honeybee's abdomen to improve both the axial scalability and bending properties of aerospace vehicle, which can lead to the super-maneuver flight performance. Combined with the methods of optimum design and topology, a new bionic morphing structure is proposed and applied to the design of morphing nose cone of aerospace vehicle. Furthermore, simulations are conducted to optimize the structural parameters of morphing nose cone. This concept design of biomimetic nose cone will provide an efficient way for aerospace vehicle to reduce the aerodynamic drag.
Morphing capability is absolutely vital for aerospace vehicle to gain predominant functions of aerodynamics, mobility and flight control while piercing and re-entering the atmosphere. However, the challenge for existing aerospace vehicle remains to change its structure of nose cone agilely. This paper carries out a lot of observational experiments on honeybee's abdomen which enhances the flight characteristics of honeybee by adjusting its biomorphic shape. A morphing structure is adopted from honeybee's abdomen to improve both the axial scalability and bending properties of aerospace vehicle, which can lead to the super-maneuver flight performance. Combined with the methods of optimum design and topology, a new bionic morphing structure is proposed and applied to the design of morphing nose cone of aerospace vehicle. Furthermore, simulations are conducted to optimize the structural parameters of morphing nose cone. This concept design of biomimetic nose cone will provide an efficient way for aerospace vehicle to reduce the aerodynamic drag.