Type-Ⅱ InAs/GaSb superlattiees made of 13 InAs monolayers (MLs) and 7 GaSb MLs are grown on GaSb substrates by solid source molecular beam epitaxy. To obtain lattice-matched structures, thin InSb layers are inserte...Type-Ⅱ InAs/GaSb superlattiees made of 13 InAs monolayers (MLs) and 7 GaSb MLs are grown on GaSb substrates by solid source molecular beam epitaxy. To obtain lattice-matched structures, thin InSb layers are inserted between InAs and GaSb layers. We complete a series of experiments to investigate the influence of the InSb deposition time, Ⅴ/Ⅲ beam-equivalent pressure ratio and interruption time between each layer, and then characterize the superlattice (SL) structures with high-resolution x-ray diffraction and atomic force microscopy. The optimized growth parameters are applied to grow the 100-period SL structure, resulting in the full-width half-maximum of 29.55 arcsee for the first SL satellite peak and zero lattice-mismatch between the zero-order SL peak and the GaSb substrate peak.展开更多
We systematically investigate the influence of InSb interface(IF)engineering on the crystal quality and optical properties of strain-balanced InAs/GaSb type-Ⅱsuperlattices(T2SLs).The type-Ⅱsuperlattice structure is ...We systematically investigate the influence of InSb interface(IF)engineering on the crystal quality and optical properties of strain-balanced InAs/GaSb type-Ⅱsuperlattices(T2SLs).The type-Ⅱsuperlattice structure is 120 periods InAs(8 ML)/GaSb(6 ML)with different thicknesses of InSb interface grown by molecular beam epitaxy(MBE).The highresolution x-ray diffraction(XRD)curves display sharp satellite peaks,and the narrow full width at half maximum(FWHM)of the 0th is only 30-39 arcsec.From high-resolution cross-sectional transmission electron microscopy(HRTEM)characterization,the InSb heterointerfaces and the clear spatial separation between the InAs and GaSb layers can be more intuitively distinguished.As the InSb interface thickness increases,the compressive strain increases,and the surface“bright spots”appear to be more apparent from the atomic force microscopy(AFM)results.Also,photoluminescence(PL)measurements verify that,with the increase in the strain,the bandgap of the superlattice narrows.By optimizing the InSb interface,a high-quality crystal with a well-defined surface and interface is obtained with a PL wavelength of 4.78μm,which can be used for mid-wave infrared(MWIR)detection.展开更多
InAs/GaSb type-II superlattce (T2SL) photodetector structures at the MWIR regime were grown by molecular beam epitaxy. The growth temperature and group-V soaking times were optimized with respect to interface and tran...InAs/GaSb type-II superlattce (T2SL) photodetector structures at the MWIR regime were grown by molecular beam epitaxy. The growth temperature and group-V soaking times were optimized with respect to interface and transport quality. Novel strain compensation schemes with insertion of InSb layers were proposed and tested to be efficient to tune the overall strain between tensile and compressive without degradation of interface and optical quality. The effect of the proposed methods is modeled by analytic functions.? Band structure calculations were also carried out for the proposed T2SL structures to assist optimizing sample designs. Single pixel photodiodes with a low dark current were demonstrated.展开更多
Type-Ⅱsuperlattice(T2SL)materials are the key element for infrared(IR)detectors.However,it is well known that the characteristics of the detectors with the T2SL layer are greatly affected by the strain developed duri...Type-Ⅱsuperlattice(T2SL)materials are the key element for infrared(IR)detectors.However,it is well known that the characteristics of the detectors with the T2SL layer are greatly affected by the strain developed during the growth process,which determines the performance of IR detectors.Therefore,great efforts have been made to properly control the strain effect and develop relevant analysis methods to evaluate the strain-induced dark current characteristics.In this work,we report the strain-induced dark current characteristics in InAs/GaSb T2SL MWIR photodetector.The overall strain of InAs/GaSb T2SL layer was analyzed by both high-resolution X-ray diffraction(HRXRD)and the dark current measured from the absorber layer at the elevated temperatures(≥110 K),where the major leakage current component is originated from the reduced minority carrier lifetime in the absorber layer.Our findings indicate that minority carrier lifetime increases as the tensile strain on the InAs/GaSb T2SL is more compensated by the compressive strain through‘InSb-like’interface,which reduces the dark current density of the device.Specifically,tensile strain compensated devices exhibited the dark current density of less than 2×10^-5 A/cm^2 at 120 K,which is more than one order of magnitude lower value compared to that of the device without tensile strain relaxation.展开更多
基金Supported by the National Basic Research Program of China under Grant Nos 2015CB351902,2015CB932402 and 2012CB619203the National Natural Science Foundation of China under Grant Nos 61177070,11374295 and U1431231the National Key Research Program of China under Grant No 2011ZX01015-001
文摘Type-Ⅱ InAs/GaSb superlattiees made of 13 InAs monolayers (MLs) and 7 GaSb MLs are grown on GaSb substrates by solid source molecular beam epitaxy. To obtain lattice-matched structures, thin InSb layers are inserted between InAs and GaSb layers. We complete a series of experiments to investigate the influence of the InSb deposition time, Ⅴ/Ⅲ beam-equivalent pressure ratio and interruption time between each layer, and then characterize the superlattice (SL) structures with high-resolution x-ray diffraction and atomic force microscopy. The optimized growth parameters are applied to grow the 100-period SL structure, resulting in the full-width half-maximum of 29.55 arcsee for the first SL satellite peak and zero lattice-mismatch between the zero-order SL peak and the GaSb substrate peak.
基金Project supported by the Beijing Scholars Program(Grant No.74A2111113)the Research Project of Beijing Education Committee(Grant No.KM202111232019)+1 种基金the National Natural Science Foundation of China(Grant No.62105039)the Research Project of Beijing Information Science&Technology University(Grant No.2022XJJ07)
文摘We systematically investigate the influence of InSb interface(IF)engineering on the crystal quality and optical properties of strain-balanced InAs/GaSb type-Ⅱsuperlattices(T2SLs).The type-Ⅱsuperlattice structure is 120 periods InAs(8 ML)/GaSb(6 ML)with different thicknesses of InSb interface grown by molecular beam epitaxy(MBE).The highresolution x-ray diffraction(XRD)curves display sharp satellite peaks,and the narrow full width at half maximum(FWHM)of the 0th is only 30-39 arcsec.From high-resolution cross-sectional transmission electron microscopy(HRTEM)characterization,the InSb heterointerfaces and the clear spatial separation between the InAs and GaSb layers can be more intuitively distinguished.As the InSb interface thickness increases,the compressive strain increases,and the surface“bright spots”appear to be more apparent from the atomic force microscopy(AFM)results.Also,photoluminescence(PL)measurements verify that,with the increase in the strain,the bandgap of the superlattice narrows.By optimizing the InSb interface,a high-quality crystal with a well-defined surface and interface is obtained with a PL wavelength of 4.78μm,which can be used for mid-wave infrared(MWIR)detection.
文摘InAs/GaSb type-II superlattce (T2SL) photodetector structures at the MWIR regime were grown by molecular beam epitaxy. The growth temperature and group-V soaking times were optimized with respect to interface and transport quality. Novel strain compensation schemes with insertion of InSb layers were proposed and tested to be efficient to tune the overall strain between tensile and compressive without degradation of interface and optical quality. The effect of the proposed methods is modeled by analytic functions.? Band structure calculations were also carried out for the proposed T2SL structures to assist optimizing sample designs. Single pixel photodiodes with a low dark current were demonstrated.
基金supported by the research fund of Chungnam National University
文摘Type-Ⅱsuperlattice(T2SL)materials are the key element for infrared(IR)detectors.However,it is well known that the characteristics of the detectors with the T2SL layer are greatly affected by the strain developed during the growth process,which determines the performance of IR detectors.Therefore,great efforts have been made to properly control the strain effect and develop relevant analysis methods to evaluate the strain-induced dark current characteristics.In this work,we report the strain-induced dark current characteristics in InAs/GaSb T2SL MWIR photodetector.The overall strain of InAs/GaSb T2SL layer was analyzed by both high-resolution X-ray diffraction(HRXRD)and the dark current measured from the absorber layer at the elevated temperatures(≥110 K),where the major leakage current component is originated from the reduced minority carrier lifetime in the absorber layer.Our findings indicate that minority carrier lifetime increases as the tensile strain on the InAs/GaSb T2SL is more compensated by the compressive strain through‘InSb-like’interface,which reduces the dark current density of the device.Specifically,tensile strain compensated devices exhibited the dark current density of less than 2×10^-5 A/cm^2 at 120 K,which is more than one order of magnitude lower value compared to that of the device without tensile strain relaxation.