基金supported by the National Key Research and Development Plan of China“Basic Theory and Methods for Resilience Assessment and Risk Control of Transportation Infrastructures”(Grant No.2021YFB2600500)Natural Science Foundation of Chongqing CSTC(Grant No.2022NSCQ-MSX4037)Advanced Talents Incubation Program of the Hebei University(Grant No.521000981082).
文摘为满足车辆行驶时能对各种车道线(实线、虚线、直道、大弯道)准确识别,提出一种基于Meanshift原理和RANSAC(Random Sample Consensus)算法的车道识别方法;该方法首先利用改进的最大熵阈值分割方法和图像灰度概率密度特征对左右车道线目标进行初定位,动态地建立车道线ROI(Region of Interests),然后运用Meanshift算法对左右车道线进行精确定位,最后利用RANSAC算法对各搜索框中候选车道线的重心进行筛选,并采用最小二乘法对左右车道线进行拟合;实验结果表明,该方法可以识别各种车道线型,并具有较好的鲁棒性;车道检测平均时间为80ms/f,车道跟踪平均时间为40ms/f。