期刊文献+

一种基于Meanshift和RANSAC的车道识别方法 被引量:2

A Lane Recognition Method Based on Meanshift Principle and RANSAC Algorithm
下载PDF
导出
摘要 为满足车辆行驶时能对各种车道线(实线、虚线、直道、大弯道)准确识别,提出一种基于Meanshift原理和RANSAC(Random Sample Consensus)算法的车道识别方法;该方法首先利用改进的最大熵阈值分割方法和图像灰度概率密度特征对左右车道线目标进行初定位,动态地建立车道线ROI(Region of Interests),然后运用Meanshift算法对左右车道线进行精确定位,最后利用RANSAC算法对各搜索框中候选车道线的重心进行筛选,并采用最小二乘法对左右车道线进行拟合;实验结果表明,该方法可以识别各种车道线型,并具有较好的鲁棒性;车道检测平均时间为80ms/f,车道跟踪平均时间为40ms/f。 In order to meet vehicle request for various lane markers (full line, dotted line, straight lane, curved line) recognition, a lane recognition method based on Meanshift principle and RANSAC algorithm is proposed. Firstly, lane marker objects are initially detected with applying improved maximum entropy image segmentation technology and intensity probability density of image. Then, the ROI is built dynamically and the left and right lane markers are detected with using Meanshift principle. With the candidate barycenter of lane marker in each detecting window, RANSAC algorithm and least square method are used to fit curved lane. Experimental results show that this method can recognize various lane markers and has better robustness. The load detectiong speed is about 80ms/f and load tracking speed is about 40ms/f.
出处 《计算机测量与控制》 北大核心 2013年第5期1344-1347,共4页 Computer Measurement &Control
基金 国家自然基金面上项目(61175075 51075137 91120306) 国家863项目(2012AA112312) 江苏省汽车工程重点实验室开放基金项目(QC201002) 资助中央高校基本科研业务费
关键词 车道标志线识别 改进的最大熵分割 动态ROI MEANSHIFT算法 RANSAC Algorithm 最小二乘法 lane marker recognition improved maximum entropy segmentation dynamic ROI meanshift algorithm RANSAC algorithm least square method
  • 相关文献

参考文献18

  • 1Dickmanns E D, Mysliwetz B D. Recursive 3--D road and relative ego state i'ecognition [J]. IEEE Trans. Pattern Anal. Mach. Intell. , 1992, 14 (2): 199-213. 被引量:1
  • 2Kluge K, Thorpe C. The YARF System for Vision--based road fol- lowing[J].Math. Comput. Model., 1995, 22 (4--7): 213 - 233. 被引量:1
  • 3Baluja S. Evolution of an artificial neural network based autonomous land vehicle controller [J]. IEEE Trans. Syst. , Man, Cybern. B, Cybern. , 1996, 26 (3): 450-463. 被引量:1
  • 4Pomerleau D, Jochem T. Rapidly adapting machine vision for auto- mated vehicle steering [C]. IEEE Expert--Special Issue on Intelli- gent System and Their Applications, 1996, 11 (2): 19 -27. 被引量:1
  • 5Bertozzi M, Broggi A. GOLD: A parallel real-time stereo vision system for generic obstacle and lane detection [J]. IEEE Trans. Image Process. , 1998, 7 (1): 62-81. 被引量:1
  • 6Kreucher C, Lakshmanan S. LANA: A lane extraction algorithm that uses frequency domain features [J]. IEEE Trans. Robot. Au- tom., 1999, 15 (2): 343-350. 被引量:1
  • 7Taylor C, Kosecka J, Blasi R, et al. A comparative study of vision --based lateral control strategies for autonomous highway driving [J]. Int. J. Robot. Res., 1999, 18 (5): 442-453. 被引量:1
  • 8Lee J W. A machine vision system for lane--departure detection [J].Comput. Vis. Image Underst. , 2002, 86 (1): 52-78. 被引量:1
  • 9Hong Cheng, Road Detection and Tracking [A]. in "Autonomous Intel- ligent Vehicles", Advances in Computer Vision and Pattern Recognition [C]. 2011, 33- 59 Chih Chang Yu; Chien--Cheng Tseng. 被引量:1
  • 10Hsu--Yung Cheng, Chih--Chang Yu , Chien-Cheng Tseng et al. Hierarchical lane detection for different types of roads [A]. A- coustics, Speech and Signal Processing, 2008. ICASSP 2008. IEEE International Conference on[C]. March 31 2008-- April 4 2008, 1349-1352. 被引量:1

二级参考文献45

共引文献145

同被引文献15

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部