Anopheles sinensis is a major malaria vector. Insect odorant-binding proteins (OBPs) may function in the reception of odorants in the olfactory system. The classification and characterization of the An. sinensis OBP...Anopheles sinensis is a major malaria vector. Insect odorant-binding proteins (OBPs) may function in the reception of odorants in the olfactory system. The classification and characterization of the An. sinensis OBP genes have not been systematically studied. In this study, 64 putative OBP genes were identified at the whole-genome level of An. sinensis based on the comparison between OBP conserved motifs, PBP_GOBE and phylogenetic analysis with An. gambiae OBPs. The characterization of An. sinensis OBPs, including the motifs conservation, gene structure, genomic organization and classification, were investigated. A new gene, AsOBP73, belonging to the Plus-C subfamily, was identified with the support of transcript and conservative motifs. These An. sinensis OBP genes were classified into three subfamilies with 37, 15 and 12 genes in the subfamily Classic, Atypical and Plus-C, respectively. The genomic organization of An. sinensis OBPs suggests a clustered distribution across nine different scaffolds. Eight genes (0BP23-28, 0BP63- 64) might originate from a single gene through a series of historic duplication events at least before divergence of Anopheles, Culex and Aedes. The microsynteny analyses indicate a very high synteny between An. sinensis and An. gambiae OBPs. OBP70 and OBP71 earlier classified under Plus-C in An. gambiae are recognized as belonging to the group Obp59a of the Classic subfamily, and OBP69 earlier classified under Plus-C has been moved to the Atypical subfamily in this study. The study established a basic information frame for further study of the OBP genes in insects as well as in An. sinensis.展开更多
The program of auto-identification of wear particles is given using aritficial neural network(ANN)technique,based on a set of debris morphology descriptor that de-scribes the shape characters of wear particles.The tra...The program of auto-identification of wear particles is given using aritficial neural network(ANN)technique,based on a set of debris morphology descriptor that de-scribes the shape characters of wear particles.The train-ing speed of the network with thw fuzzy-factor is muchfaster than that of the traditional methods.For esamale,the speed of training the network in this paper is increased five times in Exclusive OR problem(XORproblem)than other ways,and the debris chassification accuracy is more than 90% by this method,and the idemtification speed is very fast.展开更多
With the increasing planting area of Lilium lancifolium, the leaf fungal dis-ease of L. lancifolium is becoming more and more serious. In June and July of 2014, the excessive rainfal leads to the serious outbreak of l...With the increasing planting area of Lilium lancifolium, the leaf fungal dis-ease of L. lancifolium is becoming more and more serious. In June and July of 2014, the excessive rainfal leads to the serious outbreak of leaf disease of L. lanci-folium. In mid-June, the wilting rate of L. lancifolium in seriously-infected field was even up to 50%-70%. In some fields, the shoots of L. lancifolium even al wilted. The pathogen was isolated from the infected leaves of L. lancifolium. Its pathogenici-ty, spore morphology, 18S rDNA sequence and biological characteristics were stud-ied. The results showed the isolated pathogen was Alternaria alternate. The lethal temperature of mycelial growth was 55 ℃. The optimum pH was 6-7. Among the tested carbon sources and nitrogen sources, the optimum carbon source was mal-tose, and the optimum nitrogen source was yeast extract.展开更多
The purpose of this review is to apply geometric frameworks in identification problems. In contrast to the qualitative theory of dynamical systems (DSQT), the chaos and catastrophes, researches on the application of g...The purpose of this review is to apply geometric frameworks in identification problems. In contrast to the qualitative theory of dynamical systems (DSQT), the chaos and catastrophes, researches on the application of geometric frameworks have not </span><span style="font-family:Verdana;">been </span><span style="font-family:Verdana;">performed in identification problems. The direct transfer of DSQT ideas is inefficient through the peculiarities of identification systems. In this paper, the attempt </span><span style="font-family:Verdana;">is </span><span style="font-family:Verdana;">made based on the latest researches in this field. A methodology for the synthesis of geometric frameworks (GF) </span><span style="font-family:Verdana;">is </span><span style="font-family:Verdana;">propose</span><span style="font-family:Verdana;">d</span><span style="font-family:Verdana;">, which reflects features of nonlinear systems. Methods based on GF analysis </span><span style="font-family:Verdana;">are </span><span style="font-family:Verdana;">developed for the decision-making on properties and structure of nonlinear systems. The problem solution of structural identifiability </span><span style="font-family:Verdana;">is </span><span style="font-family:Verdana;">obtain</span><span style="font-family:Verdana;">ed</span><span style="font-family:Verdana;"> for nonlinear systems under uncertainty.展开更多
本试验基于获得高效纤维素优势分解菌的目的,通过分离纯化初步得到30株菌株,利用刚果红染色法初筛共得到14株纤维素分解菌,并通过滤纸条崩解实验进一步进行筛选得到5株效果较好的纤维素分解菌,通过发酵产酶利用DNS显色法测定CMC酶活力和...本试验基于获得高效纤维素优势分解菌的目的,通过分离纯化初步得到30株菌株,利用刚果红染色法初筛共得到14株纤维素分解菌,并通过滤纸条崩解实验进一步进行筛选得到5株效果较好的纤维素分解菌,通过发酵产酶利用DNS显色法测定CMC酶活力和FPA酶活力最终确定了4株优势纤维素分解菌,通过测定4株菌株的羧甲基纤维素酶(CMCase)、滤纸酶(FPA)以及β-葡萄糖苷酶(β-Gase)活,验证4株纤维素优势分解菌的产酶能力,并分别命名为X-1、X-6、X-7和X-11,并将该4株优势纤维素分解菌应用于秸秆的液态发酵,其对秸秆的降解率较自然降解相比,降解率分别提高了31.92%、40.15%、35.29%和39.98%。对4株优势菌株进行了分子鉴定,根据16S r DNA序列比对结果表明,菌株X-1、X-7和X-11均为粪产碱杆菌;菌株X-6属于解糖假苍白杆菌。展开更多
基金Acknowledgments This research was supported by the following, Par-Eu Scholars Program, the National Natural Science Foundation of China (31372265, 31572332), Coordinated Research Project of the International Atomic Energy Agency (18268/R0), and National Key Program of Science and Technology Foundation Work of China (2015FY210300). Conceived and designed the research: BC, XH. Performed the analysis: XH, BC, ZBH, YJZ, YZ, PJX, LQ. Wrote the paper: XH, BC, ZBH.
文摘Anopheles sinensis is a major malaria vector. Insect odorant-binding proteins (OBPs) may function in the reception of odorants in the olfactory system. The classification and characterization of the An. sinensis OBP genes have not been systematically studied. In this study, 64 putative OBP genes were identified at the whole-genome level of An. sinensis based on the comparison between OBP conserved motifs, PBP_GOBE and phylogenetic analysis with An. gambiae OBPs. The characterization of An. sinensis OBPs, including the motifs conservation, gene structure, genomic organization and classification, were investigated. A new gene, AsOBP73, belonging to the Plus-C subfamily, was identified with the support of transcript and conservative motifs. These An. sinensis OBP genes were classified into three subfamilies with 37, 15 and 12 genes in the subfamily Classic, Atypical and Plus-C, respectively. The genomic organization of An. sinensis OBPs suggests a clustered distribution across nine different scaffolds. Eight genes (0BP23-28, 0BP63- 64) might originate from a single gene through a series of historic duplication events at least before divergence of Anopheles, Culex and Aedes. The microsynteny analyses indicate a very high synteny between An. sinensis and An. gambiae OBPs. OBP70 and OBP71 earlier classified under Plus-C in An. gambiae are recognized as belonging to the group Obp59a of the Classic subfamily, and OBP69 earlier classified under Plus-C has been moved to the Atypical subfamily in this study. The study established a basic information frame for further study of the OBP genes in insects as well as in An. sinensis.
文摘The program of auto-identification of wear particles is given using aritficial neural network(ANN)technique,based on a set of debris morphology descriptor that de-scribes the shape characters of wear particles.The train-ing speed of the network with thw fuzzy-factor is muchfaster than that of the traditional methods.For esamale,the speed of training the network in this paper is increased five times in Exclusive OR problem(XORproblem)than other ways,and the debris chassification accuracy is more than 90% by this method,and the idemtification speed is very fast.
基金Supported by Modern Agricultural Industry Technology System Project of Ministry of Agriculture(nycytx-35-02-06)Key Program for Applied Basic Research of Agriculture of Hubei Provincial Science and Technology Plan Project(2012DBA07)~~
文摘With the increasing planting area of Lilium lancifolium, the leaf fungal dis-ease of L. lancifolium is becoming more and more serious. In June and July of 2014, the excessive rainfal leads to the serious outbreak of leaf disease of L. lanci-folium. In mid-June, the wilting rate of L. lancifolium in seriously-infected field was even up to 50%-70%. In some fields, the shoots of L. lancifolium even al wilted. The pathogen was isolated from the infected leaves of L. lancifolium. Its pathogenici-ty, spore morphology, 18S rDNA sequence and biological characteristics were stud-ied. The results showed the isolated pathogen was Alternaria alternate. The lethal temperature of mycelial growth was 55 ℃. The optimum pH was 6-7. Among the tested carbon sources and nitrogen sources, the optimum carbon source was mal-tose, and the optimum nitrogen source was yeast extract.
文摘The purpose of this review is to apply geometric frameworks in identification problems. In contrast to the qualitative theory of dynamical systems (DSQT), the chaos and catastrophes, researches on the application of geometric frameworks have not </span><span style="font-family:Verdana;">been </span><span style="font-family:Verdana;">performed in identification problems. The direct transfer of DSQT ideas is inefficient through the peculiarities of identification systems. In this paper, the attempt </span><span style="font-family:Verdana;">is </span><span style="font-family:Verdana;">made based on the latest researches in this field. A methodology for the synthesis of geometric frameworks (GF) </span><span style="font-family:Verdana;">is </span><span style="font-family:Verdana;">propose</span><span style="font-family:Verdana;">d</span><span style="font-family:Verdana;">, which reflects features of nonlinear systems. Methods based on GF analysis </span><span style="font-family:Verdana;">are </span><span style="font-family:Verdana;">developed for the decision-making on properties and structure of nonlinear systems. The problem solution of structural identifiability </span><span style="font-family:Verdana;">is </span><span style="font-family:Verdana;">obtain</span><span style="font-family:Verdana;">ed</span><span style="font-family:Verdana;"> for nonlinear systems under uncertainty.
文摘本试验基于获得高效纤维素优势分解菌的目的,通过分离纯化初步得到30株菌株,利用刚果红染色法初筛共得到14株纤维素分解菌,并通过滤纸条崩解实验进一步进行筛选得到5株效果较好的纤维素分解菌,通过发酵产酶利用DNS显色法测定CMC酶活力和FPA酶活力最终确定了4株优势纤维素分解菌,通过测定4株菌株的羧甲基纤维素酶(CMCase)、滤纸酶(FPA)以及β-葡萄糖苷酶(β-Gase)活,验证4株纤维素优势分解菌的产酶能力,并分别命名为X-1、X-6、X-7和X-11,并将该4株优势纤维素分解菌应用于秸秆的液态发酵,其对秸秆的降解率较自然降解相比,降解率分别提高了31.92%、40.15%、35.29%和39.98%。对4株优势菌株进行了分子鉴定,根据16S r DNA序列比对结果表明,菌株X-1、X-7和X-11均为粪产碱杆菌;菌株X-6属于解糖假苍白杆菌。