期刊文献+

WEAR PARTICLE CLASSIFICATION BASED ON BP NEUPAL NETWORK WITH FUZZY—FACTOR 被引量:1

下载PDF
导出
摘要 The program of auto-identification of wear particles is given using aritficial neural network(ANN)technique,based on a set of debris morphology descriptor that de-scribes the shape characters of wear particles.The train-ing speed of the network with thw fuzzy-factor is muchfaster than that of the traditional methods.For esamale,the speed of training the network in this paper is increased five times in Exclusive OR problem(XORproblem)than other ways,and the debris chassification accuracy is more than 90% by this method,and the idemtification speed is very fast.
作者 LiYanjun
机构地区 CollegeofCivilAviation
出处 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2002年第1期71-76,共6页 南京航空航天大学学报(英文版)
  • 相关文献

同被引文献16

  • 1刘永,张立毅.BP和RBF神经网络的实现及其性能比较[J].电子测量技术,2007,30(4):77-80. 被引量:56
  • 2YOU Y L, LID X, DENG X, et al. Effect of solid lubricants on tribologieal behavior of glass fiber reinforced polyamide 6 [ J ]. Polymer Composites,2013,34( 11 ) :1783 - 1793. 被引量:1
  • 3PALAB1YIK M, BAHADUR S. Tribological studies of polyamidc 6 and high-density polyethylene blends filled with PTFE and copper oxide and reinforced with short glass fibers[J]. Wear,2002,253(3/4) : 369 - 376. 被引量:1
  • 4SHA W, EDWARDS K L. The use of artificial neural networks in materials science based research[J]. Materials and Design,2007, 28(6) :1747 - 1752. 被引量:1
  • 5GUO Z, SHA W. Modelling the correlation between processing parameters and properties of maraging steels using artificial neural network [ J ]. Computational Materials Science, 2004, 29 ( 1 ) : 12 - 28. 被引量:1
  • 6JIANG Z, GYUROVA L, ZHANG Z, et al. Neural network based prediction on mechanical and wear properties of short fibers reinforced polyamide composites [ J ]. Materials and Design, 2008, 29 ( 3 ) : 628 - 637. 被引量:1
  • 7JEAN M D,LIN B T,CHOU J H. Application of an artificial neural network for simulating robust plasma-sprayed zirconia coatings [ J ]. Journal of the American Ceramic Society, 2008, 91 (5): 1539 - 1547. 被引量:1
  • 8CAYDAS U, HASCALIK A. A study on surface roughness in abrasive waterjet machining process using artificial neural networks and regression analysis method [ J ]. Journal of Materials Processing Technology,2008,202( 1/2/3 ) :574 - 582. 被引量:1
  • 9YANG Y Y,LINKENS D A,Talamantes-Silva J. Roll load prediction- data collection, analysis and neural network modelling[ J]. Journal of Materials Processing Technology ,2004,152(3 ) :304 - 315. 被引量:1
  • 10STEVEN P J. Preliminary investigation of neural network techniques to predict tribological properties [ J]. Tribology Transactions, 1997, 40 (2) : 312 -320. 被引量:1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部