目的探讨m^(7)G-lncRNAs能否作为结肠癌患者预后及肿瘤微环境的生物标志物。方法TCGA数据库筛选m^(7)G-lncRNAs(|Pearson R|>0.4,P<0.001),多因素Cox分析构建m^(7)G-lncRNAs风险模型。使用ROC和C-index曲线对风险模型进行验证。...目的探讨m^(7)G-lncRNAs能否作为结肠癌患者预后及肿瘤微环境的生物标志物。方法TCGA数据库筛选m^(7)G-lncRNAs(|Pearson R|>0.4,P<0.001),多因素Cox分析构建m^(7)G-lncRNAs风险模型。使用ROC和C-index曲线对风险模型进行验证。构建诺莫图和诺莫图的校准曲线用于预测结肠癌患者的预后。点柱图和K-M生存曲线评估风险打分对患者临床分期和预后的影响。CIBERSORT和ESTIMATE探究高低风险组患者肿瘤微环境和免疫细胞浸润程度的联系,同时分析风险打分对结肠癌患者微卫星不稳定性,干细胞指数和免疫检查点表达的影响。使用相互作用基因搜索工具(STRING)构建蛋白质-蛋白质相互作用网络,挖掘m^(7)G-lncRNAs调控的关键靶点。最后,使用蛋白印迹实验在4对结肠癌组织与癌旁正常组织中验证这些关键靶点的表达。结果从TCGA数据库鉴别出1722个m^(7)G-lncRNAs。多因素Cox分析筛选出12个lncRNAs用于构建风险模型,其中AC003101.2、AC005014.2、AC008760.1、AC092944.1、AL1161729.4、AL301422.4、AP001619.1、AP003355.1和ZEB1-AS1为高风险lncRNAs,AC025171.4、AC073957.3及TNFRSF10A-AS1为低风险lncRNAs。ROC曲线显示风险模型对患者1年、3年、5年生存预测的AUC值分别为0.727、0.747、0.794。诺莫图预测患者预后的AUC值为0.794,校准曲线显示诺莫图对患者生存的预测与患者实际的生存基本一致。高风险组患者的T分期(T1~T2 vs T3~T4:P=0.034)、N分期(N0 vs N2:P=7.8e-08;N1 vs N2:P=0.00081)以及M分期(M0 vs M1:P=0.007)均高于低风险组患者。低风险组患者常伴随高微卫星不稳定状态(MSS vs MSI-H:P=0.034)。肿瘤干性指数与风险得分呈负相关(r=-0.19;P=7.3e-05)。高风险组患者基质细胞打分(P=0.0028)以及总打分(P=0.007)明显高于低风险组患者较高,激活的肥大细胞(r=-0.11;P=0.045)和静息CD4^(+)T细胞(r=-0.14;P=0.01)的表达也较低。多数免疫检查点在高风险患者中高表达(P<0.05)。蛋白印迹�展开更多
目的探讨m^(7)G相关基因能否作为肝细胞性肝癌预后的生物标志物。方法采用癌症基因组图谱(The Cancer Genome Atlas,TCGA)数据库筛选肝细胞性肝癌组织和癌旁组织中有表达差异的m^(7)G相关基因组,m^(7)G相关基因和临床数据中的生存时间...目的探讨m^(7)G相关基因能否作为肝细胞性肝癌预后的生物标志物。方法采用癌症基因组图谱(The Cancer Genome Atlas,TCGA)数据库筛选肝细胞性肝癌组织和癌旁组织中有表达差异的m^(7)G相关基因组,m^(7)G相关基因和临床数据中的生存时间及生存状态按照样本ID号匹配合并后筛选预后基因组,将两组的交集基因纳入lasso回归,对筛选出来的基因进行风险评分,基于风险评分的中位数值将所有肝细胞性肝癌患者分为高、低两个风险组,并对高分险组和低风险组进行单因素和多因素的Cox回归分析,评价风险评分在预后中的差异。结果经lasso回归筛选出4个模型基因(AGO2、NCBP1、NCBP2、WDR4),高风险组的生存率显著低于低风险组(P=0.027),ROC曲线显示风险模型对患者1,2,3年生存预测的曲线下面积(AUC)分别为0.683,0.604,0.602。肿瘤分期、T分期、M分期和风险评分是肝细胞性肝癌预后的相关因素(P<0.05),其中风险评分是影响肝细胞性肝癌患者生存率的独立预后因素(P=0.044,HR=1.637)。结论m^(7)G相关基因可作为肝细胞性肝癌预后的生物标志物。AGO2、NCBP1、NCBP2和WDR4构建的风险模型对肝细胞性肝癌具有重要的预后价值。展开更多
RNA methylation modifications have been found for decades of years, which occur at different RNA types of numerous species, and their distribution is species-specific. However, people rarely know their biological func...RNA methylation modifications have been found for decades of years, which occur at different RNA types of numerous species, and their distribution is species-specific. However, people rarely know their biological functions. There are several identified methylation modifications in eukaryotic messenger RNA (mRNA), such as NT-methylguanosine (mVG) at the cap, Nr-methyl-2'-O-methyladenosine (m6Am), 2'-O-methylation (Nm) within the cap and the internal positions, and internal N6-methyladenosine (m6A) and 5-methylcytosine (mSC). Among them, mTG cap was studied more clearly and found to have vital roles in several important mRNA processes like mRNA translation, stability and nuclear export, m6A as the most abundant modification in mRNA was found in the 1970s and has been proposed to function in mRNA splicing, translation, stability, transport and so on. mrA has been discovered as the first RNA reversible modification which is demethylated directly by human fat mass and obesity associated protein (FRO) and its homolog protein, alkylation repair ho- molog 5 (ALKBH5). b-TO has a special demethylation mechanism that demethylases m6A to A through two over-oxidative intermediate states: N6-hydroxymethyladenosine (hm6A) and Nr-formyladenosine (frA). The two newly discovered m6A demethylases, bTO and ALKBH5, significantly control energy homeostasis and spermatogenesis, respectively, indicating that the dynamic and reversible mrA, analogous to DNA and histone modifications, plays broad roles in biological kingdoms and brings us an emerging field "RNA Epige- netics". 5-methylcytosine (5mC) as an epigenetic mark in DNA has been studied widely, but mSC in mRNA is seldom explored. The bisulfide sequencing showed mSC is another abundant modification in mRNA, suggesting that it might be another RNA epigenetic mark. This review focuses on the main methylation modifications in mRNA to describe their formation, distribution, function and demethylation from the current knowledge and t展开更多
Background:Cancer cells selectively promote the translation of oncogenic tran-scripts to stimulate cancer progression.Although growing evidence has revealed that tRNA modifications and related genes participate in thi...Background:Cancer cells selectively promote the translation of oncogenic tran-scripts to stimulate cancer progression.Although growing evidence has revealed that tRNA modifications and related genes participate in this process,their roles in head and neck squamous cell carcinoma(HNSCC)remain largely unchar-acterized.Here,we sought to investigate the function and mechanisms of the transfer RNA(tRNA)N7-methylguanosine(m'G)modification in regulating the occurrence and development of HNSCC.Methods:Cell lost of-function and gain-of function assays,xenograft models,conditional knockout and knockin mouse models were used to study the physi-ological functions of tRNA m'G modification in HNSCC tumorigenesis.tRNA modification and expression profiling,mRNA translation profiling and res-cue assays were performed to uncover the underlying molecular mechanisms.Single-cell RNA sequencing(scRNA seq)was conducted to explore the tumor microenvironment changes.Results:The tRNA.m7G methyltransferase complex components Methyltransferase-like 1(METTL1)/WD repeat domain 4(WDR4)were upregulated in HNSCC and associated with a poor prognosis.Functionally,METTL1/WDR4 promoted HNSCC progression and metastasis in cell-based and transgenic mouse models.Mechanistically,ablation of METTL1 reduced the m'G levels of 16 tRNAS,inhibiting the translation of a subset of oncogenic transcripts,including genes related to the phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin(PI3K/AKT/mTOR)signaling pathway.In addition,chemical modulators of the PI3K/Akt/mTOR signaling pathway reversed the effects of Mettll in mouse HNSCC.Furthermore,scRNA-seq results revealed that Mettll knockout in mouse tumor cells altered the immune landscape and cell-cell interaction between the tumor and stromal compartment.Conclusions:The tRNA m?G methyltransferase METTLI was found to promote the development and malignancy of HNSCC through regulating global mRNA translation,including the PI3K/AKT/mTOR signaling pathway,and found to alter immune landscape.展开更多
文摘目的探讨m^(7)G-lncRNAs能否作为结肠癌患者预后及肿瘤微环境的生物标志物。方法TCGA数据库筛选m^(7)G-lncRNAs(|Pearson R|>0.4,P<0.001),多因素Cox分析构建m^(7)G-lncRNAs风险模型。使用ROC和C-index曲线对风险模型进行验证。构建诺莫图和诺莫图的校准曲线用于预测结肠癌患者的预后。点柱图和K-M生存曲线评估风险打分对患者临床分期和预后的影响。CIBERSORT和ESTIMATE探究高低风险组患者肿瘤微环境和免疫细胞浸润程度的联系,同时分析风险打分对结肠癌患者微卫星不稳定性,干细胞指数和免疫检查点表达的影响。使用相互作用基因搜索工具(STRING)构建蛋白质-蛋白质相互作用网络,挖掘m^(7)G-lncRNAs调控的关键靶点。最后,使用蛋白印迹实验在4对结肠癌组织与癌旁正常组织中验证这些关键靶点的表达。结果从TCGA数据库鉴别出1722个m^(7)G-lncRNAs。多因素Cox分析筛选出12个lncRNAs用于构建风险模型,其中AC003101.2、AC005014.2、AC008760.1、AC092944.1、AL1161729.4、AL301422.4、AP001619.1、AP003355.1和ZEB1-AS1为高风险lncRNAs,AC025171.4、AC073957.3及TNFRSF10A-AS1为低风险lncRNAs。ROC曲线显示风险模型对患者1年、3年、5年生存预测的AUC值分别为0.727、0.747、0.794。诺莫图预测患者预后的AUC值为0.794,校准曲线显示诺莫图对患者生存的预测与患者实际的生存基本一致。高风险组患者的T分期(T1~T2 vs T3~T4:P=0.034)、N分期(N0 vs N2:P=7.8e-08;N1 vs N2:P=0.00081)以及M分期(M0 vs M1:P=0.007)均高于低风险组患者。低风险组患者常伴随高微卫星不稳定状态(MSS vs MSI-H:P=0.034)。肿瘤干性指数与风险得分呈负相关(r=-0.19;P=7.3e-05)。高风险组患者基质细胞打分(P=0.0028)以及总打分(P=0.007)明显高于低风险组患者较高,激活的肥大细胞(r=-0.11;P=0.045)和静息CD4^(+)T细胞(r=-0.14;P=0.01)的表达也较低。多数免疫检查点在高风险患者中高表达(P<0.05)。蛋白印迹�
文摘目的探讨m^(7)G相关基因能否作为肝细胞性肝癌预后的生物标志物。方法采用癌症基因组图谱(The Cancer Genome Atlas,TCGA)数据库筛选肝细胞性肝癌组织和癌旁组织中有表达差异的m^(7)G相关基因组,m^(7)G相关基因和临床数据中的生存时间及生存状态按照样本ID号匹配合并后筛选预后基因组,将两组的交集基因纳入lasso回归,对筛选出来的基因进行风险评分,基于风险评分的中位数值将所有肝细胞性肝癌患者分为高、低两个风险组,并对高分险组和低风险组进行单因素和多因素的Cox回归分析,评价风险评分在预后中的差异。结果经lasso回归筛选出4个模型基因(AGO2、NCBP1、NCBP2、WDR4),高风险组的生存率显著低于低风险组(P=0.027),ROC曲线显示风险模型对患者1,2,3年生存预测的曲线下面积(AUC)分别为0.683,0.604,0.602。肿瘤分期、T分期、M分期和风险评分是肝细胞性肝癌预后的相关因素(P<0.05),其中风险评分是影响肝细胞性肝癌患者生存率的独立预后因素(P=0.044,HR=1.637)。结论m^(7)G相关基因可作为肝细胞性肝癌预后的生物标志物。AGO2、NCBP1、NCBP2和WDR4构建的风险模型对肝细胞性肝癌具有重要的预后价值。
基金supported by the grant from the National Natural Science Foundation of China (No. 21210003)
文摘RNA methylation modifications have been found for decades of years, which occur at different RNA types of numerous species, and their distribution is species-specific. However, people rarely know their biological functions. There are several identified methylation modifications in eukaryotic messenger RNA (mRNA), such as NT-methylguanosine (mVG) at the cap, Nr-methyl-2'-O-methyladenosine (m6Am), 2'-O-methylation (Nm) within the cap and the internal positions, and internal N6-methyladenosine (m6A) and 5-methylcytosine (mSC). Among them, mTG cap was studied more clearly and found to have vital roles in several important mRNA processes like mRNA translation, stability and nuclear export, m6A as the most abundant modification in mRNA was found in the 1970s and has been proposed to function in mRNA splicing, translation, stability, transport and so on. mrA has been discovered as the first RNA reversible modification which is demethylated directly by human fat mass and obesity associated protein (FRO) and its homolog protein, alkylation repair ho- molog 5 (ALKBH5). b-TO has a special demethylation mechanism that demethylases m6A to A through two over-oxidative intermediate states: N6-hydroxymethyladenosine (hm6A) and Nr-formyladenosine (frA). The two newly discovered m6A demethylases, bTO and ALKBH5, significantly control energy homeostasis and spermatogenesis, respectively, indicating that the dynamic and reversible mrA, analogous to DNA and histone modifications, plays broad roles in biological kingdoms and brings us an emerging field "RNA Epige- netics". 5-methylcytosine (5mC) as an epigenetic mark in DNA has been studied widely, but mSC in mRNA is seldom explored. The bisulfide sequencing showed mSC is another abundant modification in mRNA, suggesting that it might be another RNA epigenetic mark. This review focuses on the main methylation modifications in mRNA to describe their formation, distribution, function and demethylation from the current knowledge and t
基金National Natural Science Foundation of China,Grant/Award Numbers:81872409,82173362Natural Science Foundation of Guangdong Province,Grant/Award Numbers:2018A030313610,2019A1515110110,2020A1515010291+1 种基金The Open Funding of the State Key Laboratory of Oral Diseases,Grant/Award Number:SKLOD2021OF02and the use was approved by the Institutional Review Board of the First Affiliated Hospital of Sun Yat-Sen University(2016074).The nude mouse experi-ments performed were approved by the Laboratory Ani-mal Center of Sun Yat-SenUniversity(SYSU-IACUC-2021-000092).The transgenic mouse experiments performed were approved by the Laboratory Animal Center of Sun Yat-Sen University(SYSU-IACUC-2020-000569).
文摘Background:Cancer cells selectively promote the translation of oncogenic tran-scripts to stimulate cancer progression.Although growing evidence has revealed that tRNA modifications and related genes participate in this process,their roles in head and neck squamous cell carcinoma(HNSCC)remain largely unchar-acterized.Here,we sought to investigate the function and mechanisms of the transfer RNA(tRNA)N7-methylguanosine(m'G)modification in regulating the occurrence and development of HNSCC.Methods:Cell lost of-function and gain-of function assays,xenograft models,conditional knockout and knockin mouse models were used to study the physi-ological functions of tRNA m'G modification in HNSCC tumorigenesis.tRNA modification and expression profiling,mRNA translation profiling and res-cue assays were performed to uncover the underlying molecular mechanisms.Single-cell RNA sequencing(scRNA seq)was conducted to explore the tumor microenvironment changes.Results:The tRNA.m7G methyltransferase complex components Methyltransferase-like 1(METTL1)/WD repeat domain 4(WDR4)were upregulated in HNSCC and associated with a poor prognosis.Functionally,METTL1/WDR4 promoted HNSCC progression and metastasis in cell-based and transgenic mouse models.Mechanistically,ablation of METTL1 reduced the m'G levels of 16 tRNAS,inhibiting the translation of a subset of oncogenic transcripts,including genes related to the phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin(PI3K/AKT/mTOR)signaling pathway.In addition,chemical modulators of the PI3K/Akt/mTOR signaling pathway reversed the effects of Mettll in mouse HNSCC.Furthermore,scRNA-seq results revealed that Mettll knockout in mouse tumor cells altered the immune landscape and cell-cell interaction between the tumor and stromal compartment.Conclusions:The tRNA m?G methyltransferase METTLI was found to promote the development and malignancy of HNSCC through regulating global mRNA translation,including the PI3K/AKT/mTOR signaling pathway,and found to alter immune landscape.