Combined with air annealing, rutile-structured IrO 2 nanoparticles with various sizes were prepared using colloidal method. The nanoparticles were used as the electrocatalysts for the oxygen evolution reaction (OER)...Combined with air annealing, rutile-structured IrO 2 nanoparticles with various sizes were prepared using colloidal method. The nanoparticles were used as the electrocatalysts for the oxygen evolution reaction (OER) in acidic media, and their grain size effect was studied. The results show that with the increase in annealing temperature, the grain size of the catalyst increases, and the voltammetric charges (the electroactive areas) and apparent activity for the OER decrease. The relationship between the intrinsic activity and the annealing temperature exhibits a volcano-type curve and the catalyst annealed at 550 ℃ achieved the best result.展开更多
The enhanced electrochemical stability of the synthesized hybrid catalyst has been demonstrated by the introduction of the synergistic effect between carbon powder additive and the prepared catalyst.Single crystal IrO...The enhanced electrochemical stability of the synthesized hybrid catalyst has been demonstrated by the introduction of the synergistic effect between carbon powder additive and the prepared catalyst.Single crystal IrO 2 nanorod (SC-IrO 2 NR) catalyst was prepared by a sol-gel method.The structure and performance of the catalyst sample were characterized by X-ray diffraction spectroscopy (XRD),scanning electron microscope (SEM),transmission electron microscope (TEM),rotating disk electrode (RDE) and cyclic voltammetry (CV) measurements.XRD patterns and TEM images indicate that the catalyst sample has a rutile IrO 2 single crystal nanorod structure.The onset potential for oxygen reduction reaction (ORR) of the SC-IrO 2 NR-carbon hybrid catalyst specimen is 0.75 V (vs.RHE) in RDE measurement.CV and RDE test results show that the SC-IrO 2 NR-carbon hybrid catalyst has a better electrochemical stability in comparison with the commercial Pt/C catalyst,with attenuation ratios of 17.67% and 44.60% for the SC-IrO 2 NR-carbon hybrid catalyst and the commercial Pt/C catalyst after 1500 cycles,respectively.Therefore,in terms of stability,the SC-IrO 2 NR-carbon hybrid catalyst has a promising potential in the application of the proton exchange membrane fuel cell.展开更多
Anomalous structural characteristics of the so-called first sharp diffraction peak (FSDP) that arises in the total static structure functions of network-forming glasses and liquids at around 1-2 A<sup>-1<...Anomalous structural characteristics of the so-called first sharp diffraction peak (FSDP) that arises in the total static structure functions of network-forming glasses and liquids at around 1-2 A<sup>-1</sup> have been reviewed and discussed in details. Unlike other peaks in the static structure functions, the FSDP has anomalous dependencies on temperature, pressure and composition. Despite the fact that the FSDP is considered as a signature of intermediate range order (IRO) in network-forming glasses and liquids, its structural origin remains unclear and till now, it forms a subject of debate. A brief account for some anomalous characteristics of the FSDP followed by the different controversial interpretations about its structural origin has been reviewed and discussed. Some of the interpretations that seem to be inconsistent with recent experimental results have been ruled out. The most likely structural origins for the occurrence of the FSDP have been highlighted and discussed in details.展开更多
A comparative study on the phenotypic and genetic characteristics among Acidithiobacillus ferrooxidans (AF2), a typic strain ATCC23270 and a previously isolated strain AF3 was performed. AF2 can use ferrous ion (F...A comparative study on the phenotypic and genetic characteristics among Acidithiobacillus ferrooxidans (AF2), a typic strain ATCC23270 and a previously isolated strain AF3 was performed. AF2 can use ferrous ion (Fe^2+) or elemental sulfur (S^0) as sole energy source, but oxidizes So more effectively than Fe^2+, which is different from ATCC23270 and AF3. The G+C content of AF2 is 51.8% (molar fraction), however, ATCC23270 and AF3 strains have G+C content of 63.7% and 64.8% (molar fraction), respectively. The DNA-DNA hybridization results show that AF2 has 41.53% and 52.38% genome similarity to ATCC 23270 and AF3, respectively, but AF3 has a high genome similarity of 89.86% to ATCC 23270 strain. Rusticyanin (rus) and subunit III of aa3-type cytochrome oxidase (coxC) genes are not detected in AF2, but Fe^2+ oxidase (iro) gene can be detected. To understand the genomic organization of iro gene, a cosmid library of AF2 genome was constructed and iro gene-containing clone was screened. The sequencing result shows that although the nucleotide sequence of iro gene in AF2 is completely identical to that of ATCC 23270 strain, its genomic organization is different from that of ATCC 23270. In AF2, iro is located at downstream ofpurA gene, while it is located at downstream ofpetC-2 gene in ATCC 23270 strain. These results indicate that AF2 is a novel strain ofA. ferrooxidans, and that phenotypic differences among the strains ofA. ferrooxidans are closely correlated with their genetic polymorphisms.展开更多
One bioleaching bacterium, named as strain DXS, was isolated from acid mine drainages (AMDs) of Dongxiangshan Mine of Hami, Xinjiang Province, China. The strain DXS is gram-negative and rod-shaped with a size of (0...One bioleaching bacterium, named as strain DXS, was isolated from acid mine drainages (AMDs) of Dongxiangshan Mine of Hami, Xinjiang Province, China. The strain DXS is gram-negative and rod-shaped with a size of (0.40±0.05) μm x (1.3±0.5) μm. The optimal temperature and pH for growth are 30 ℃ and pH 2.0, respectively. It can grow autotrophically by using ferrous iron, elemental sulfur and NaS203 as sole energy sources. In the phylogenetic tree, strain DXS has similarity with Acidithiobacillus ferrooxidans type strain ATCC 23270 with 99.57% sequence similarity. The cloning and sequencing of Iro protein gene (iro) and tetrathionate hydrolase gene (tth) reveal that strain DXS is completely identical in iro gene sequence to A. ferrooxidans LY (DQ166841), and almost identical in tth gene sequene to .4. ferrooxidans (AB259312) (only two nucleotides change). The bioleaching experiments of marmatite and pyrite reveal that the leached zinc and iron concentrations reach 3.01 g/L and 2.75 g/L, respectively. The strain has a well potential application in industry bioleaching.展开更多
基金Supported by the National Natural Science Foundation of China(21073137)National Basic Research Program of China(2012CB932800)
文摘Combined with air annealing, rutile-structured IrO 2 nanoparticles with various sizes were prepared using colloidal method. The nanoparticles were used as the electrocatalysts for the oxygen evolution reaction (OER) in acidic media, and their grain size effect was studied. The results show that with the increase in annealing temperature, the grain size of the catalyst increases, and the voltammetric charges (the electroactive areas) and apparent activity for the OER decrease. The relationship between the intrinsic activity and the annealing temperature exhibits a volcano-type curve and the catalyst annealed at 550 ℃ achieved the best result.
基金supported by the National High Technology Research and Development Program of China (2008AA11A106)the National Natural Science Foundation of China (50632050)
文摘The enhanced electrochemical stability of the synthesized hybrid catalyst has been demonstrated by the introduction of the synergistic effect between carbon powder additive and the prepared catalyst.Single crystal IrO 2 nanorod (SC-IrO 2 NR) catalyst was prepared by a sol-gel method.The structure and performance of the catalyst sample were characterized by X-ray diffraction spectroscopy (XRD),scanning electron microscope (SEM),transmission electron microscope (TEM),rotating disk electrode (RDE) and cyclic voltammetry (CV) measurements.XRD patterns and TEM images indicate that the catalyst sample has a rutile IrO 2 single crystal nanorod structure.The onset potential for oxygen reduction reaction (ORR) of the SC-IrO 2 NR-carbon hybrid catalyst specimen is 0.75 V (vs.RHE) in RDE measurement.CV and RDE test results show that the SC-IrO 2 NR-carbon hybrid catalyst has a better electrochemical stability in comparison with the commercial Pt/C catalyst,with attenuation ratios of 17.67% and 44.60% for the SC-IrO 2 NR-carbon hybrid catalyst and the commercial Pt/C catalyst after 1500 cycles,respectively.Therefore,in terms of stability,the SC-IrO 2 NR-carbon hybrid catalyst has a promising potential in the application of the proton exchange membrane fuel cell.
文摘Anomalous structural characteristics of the so-called first sharp diffraction peak (FSDP) that arises in the total static structure functions of network-forming glasses and liquids at around 1-2 A<sup>-1</sup> have been reviewed and discussed in details. Unlike other peaks in the static structure functions, the FSDP has anomalous dependencies on temperature, pressure and composition. Despite the fact that the FSDP is considered as a signature of intermediate range order (IRO) in network-forming glasses and liquids, its structural origin remains unclear and till now, it forms a subject of debate. A brief account for some anomalous characteristics of the FSDP followed by the different controversial interpretations about its structural origin has been reviewed and discussed. Some of the interpretations that seem to be inconsistent with recent experimental results have been ruled out. The most likely structural origins for the occurrence of the FSDP have been highlighted and discussed in details.
基金Project(200805032) supported by the Scientific Research Program of Marine Public Welfare Industry of China
文摘A comparative study on the phenotypic and genetic characteristics among Acidithiobacillus ferrooxidans (AF2), a typic strain ATCC23270 and a previously isolated strain AF3 was performed. AF2 can use ferrous ion (Fe^2+) or elemental sulfur (S^0) as sole energy source, but oxidizes So more effectively than Fe^2+, which is different from ATCC23270 and AF3. The G+C content of AF2 is 51.8% (molar fraction), however, ATCC23270 and AF3 strains have G+C content of 63.7% and 64.8% (molar fraction), respectively. The DNA-DNA hybridization results show that AF2 has 41.53% and 52.38% genome similarity to ATCC 23270 and AF3, respectively, but AF3 has a high genome similarity of 89.86% to ATCC 23270 strain. Rusticyanin (rus) and subunit III of aa3-type cytochrome oxidase (coxC) genes are not detected in AF2, but Fe^2+ oxidase (iro) gene can be detected. To understand the genomic organization of iro gene, a cosmid library of AF2 genome was constructed and iro gene-containing clone was screened. The sequencing result shows that although the nucleotide sequence of iro gene in AF2 is completely identical to that of ATCC 23270 strain, its genomic organization is different from that of ATCC 23270. In AF2, iro is located at downstream ofpurA gene, while it is located at downstream ofpetC-2 gene in ATCC 23270 strain. These results indicate that AF2 is a novel strain ofA. ferrooxidans, and that phenotypic differences among the strains ofA. ferrooxidans are closely correlated with their genetic polymorphisms.
基金Projects(50974140, 50674101) supported by the National Natural Science Foundation of ChinaProject(2010CB630902) supported by the National Basic Research Program of China
文摘One bioleaching bacterium, named as strain DXS, was isolated from acid mine drainages (AMDs) of Dongxiangshan Mine of Hami, Xinjiang Province, China. The strain DXS is gram-negative and rod-shaped with a size of (0.40±0.05) μm x (1.3±0.5) μm. The optimal temperature and pH for growth are 30 ℃ and pH 2.0, respectively. It can grow autotrophically by using ferrous iron, elemental sulfur and NaS203 as sole energy sources. In the phylogenetic tree, strain DXS has similarity with Acidithiobacillus ferrooxidans type strain ATCC 23270 with 99.57% sequence similarity. The cloning and sequencing of Iro protein gene (iro) and tetrathionate hydrolase gene (tth) reveal that strain DXS is completely identical in iro gene sequence to A. ferrooxidans LY (DQ166841), and almost identical in tth gene sequene to .4. ferrooxidans (AB259312) (only two nucleotides change). The bioleaching experiments of marmatite and pyrite reveal that the leached zinc and iron concentrations reach 3.01 g/L and 2.75 g/L, respectively. The strain has a well potential application in industry bioleaching.