Hypoxia,as an important hallmark of the tumor microenvironment,is a major cause of oxidative stress and plays a central role in various malignant tumors,including glioblastoma.Elevated reactive oxygen species(ROS)in a...Hypoxia,as an important hallmark of the tumor microenvironment,is a major cause of oxidative stress and plays a central role in various malignant tumors,including glioblastoma.Elevated reactive oxygen species(ROS)in a hypoxic microenvironment promote glioblastoma progression;however,the underlying mechanism has not been clarified.Herein,we found that hypoxia promoted ROS production,and the proliferation,migration,and invasion of glioblastoma cells,while this promotion was restrained by ROS scavengers N-acetyl-L-cysteine(NAC)and diphenyleneiodonium chloride(DPI).Hypoxia-induced ROS activated hypoxia-inducible factor-1α(HIF-1α)signaling,which enhanced cell migration and invasion by epithelial-mesenchymal transition(EMT).Furthermore,the induction of serine protease inhibitor family E member 1(SERPINE1)was ROS-dependent under hypoxia,and HIF-1αmediated SERPINE1 increase induced by ROS via binding to the SERPINE1 promoter region,thereby facilitating glioblastoma migration and invasion.Taken together,our data revealed that hypoxia-induced ROS reinforce the hypoxic adaptation of glioblastoma by driving the HIF-1α-SERPINE1 signaling pathway,and that targeting ROS may be a promising therapeutic strategy for glioblastoma.展开更多
基金This work was supported by the National Natural Science Foundation of China(Nos.81772688 and 81372698)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)+1 种基金the Research Foundation for Talented Scholars of Xuzhou Medical University(No.RC20552223)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX20_2463),China。
文摘Hypoxia,as an important hallmark of the tumor microenvironment,is a major cause of oxidative stress and plays a central role in various malignant tumors,including glioblastoma.Elevated reactive oxygen species(ROS)in a hypoxic microenvironment promote glioblastoma progression;however,the underlying mechanism has not been clarified.Herein,we found that hypoxia promoted ROS production,and the proliferation,migration,and invasion of glioblastoma cells,while this promotion was restrained by ROS scavengers N-acetyl-L-cysteine(NAC)and diphenyleneiodonium chloride(DPI).Hypoxia-induced ROS activated hypoxia-inducible factor-1α(HIF-1α)signaling,which enhanced cell migration and invasion by epithelial-mesenchymal transition(EMT).Furthermore,the induction of serine protease inhibitor family E member 1(SERPINE1)was ROS-dependent under hypoxia,and HIF-1αmediated SERPINE1 increase induced by ROS via binding to the SERPINE1 promoter region,thereby facilitating glioblastoma migration and invasion.Taken together,our data revealed that hypoxia-induced ROS reinforce the hypoxic adaptation of glioblastoma by driving the HIF-1α-SERPINE1 signaling pathway,and that targeting ROS may be a promising therapeutic strategy for glioblastoma.