以产氢量为主要实验指标,基于响应面法BBD模型研究不同影响因素对生物质秸秆酶解光合产氢的影响,考察光合产氢过程中不同影响因素间交互作用的显著性,并对玉米秸秆酶解光合生物制氢工艺进行优化。研究结果表明:p H值、温度和纤维素酶量...以产氢量为主要实验指标,基于响应面法BBD模型研究不同影响因素对生物质秸秆酶解光合产氢的影响,考察光合产氢过程中不同影响因素间交互作用的显著性,并对玉米秸秆酶解光合生物制氢工艺进行优化。研究结果表明:p H值、温度和纤维素酶量三因素中,p H值对玉米秸秆酶解光合产氢的影响最大;多因素交互作用中,p H值和温度的交互作用最为显著;采用BBD模型获得的最佳产氢条件为:p H值5.43,温度30.8℃,纤维素酶量70 mg/g,最大产氢量149.39 m L,最大产氢率29.88 m L/g。通过实验对模型进行验证,实际最大产氢量达155.52 m L,产氢率31.11 m L/g,和预测值的误差为4.1%,说明该模型具有较好的拟合性。展开更多
The catalytic performance is highly related to the catalyst structure.Herein,a series of Ni nanoparticles supported on Y_(2)O_(3) with different morphologies were successfully synthesized via hydrothermal process scre...The catalytic performance is highly related to the catalyst structure.Herein,a series of Ni nanoparticles supported on Y_(2)O_(3) with different morphologies were successfully synthesized via hydrothermal process screening different pH environments.These Ni/Y_(2)O_(3)catalysts were applied to efficiently produce CO_(x)-free H2through ammonia decomposition.We identify a significant impact of Y_(2)O_(3)supports on nickel nanoclusters sizes and dispersion.The experimental results show that Ni/Y11 catalyst achieves 100% ammonia decomposition conversion under a gas hour space velocity(GHSV) of 12,000 ml·h^(-1)·gcat^(-1) and temperature of 650℃.Such a high level of activity over Ni/Y11 catalyst was attributed to a large specific surface area,appropriate alkalinity,and small Ni nanoparticles diameter with high dispersion.展开更多
In this paper,we report our attempts to raise the efficiency of liquid reduction method when using high specific surface area TiO2(HSTiO2)by doping Au.Characterization of Au-HSTiO2 was conducted via XRD,UV-vis,SEM,and...In this paper,we report our attempts to raise the efficiency of liquid reduction method when using high specific surface area TiO2(HSTiO2)by doping Au.Characterization of Au-HSTiO2 was conducted via XRD,UV-vis,SEM,and photocurrent intensity.The experimental results show that Au-HSTiO2 exhibits prominently higher photocatalytic hydrogen production than TiO2 and HSTiO2.Enhanced photosynthetic hydrogen production ability of Au-HSTiO2 should be attributed to the presence of abundant surface active sites of HSTiO2,remarkably extending electronic holes in Au doping.This study provides a promising photosynthetic material for hydrogen production.展开更多
Oxygenated carbon materials exhibit outstanding electrocatalytic performance in the production of hydrogen peroxide(H2O2)through a two-electron oxygen reduction reaction.The nature of the active functional group and u...Oxygenated carbon materials exhibit outstanding electrocatalytic performance in the production of hydrogen peroxide(H2O2)through a two-electron oxygen reduction reaction.The nature of the active functional group and underlying reaction mechanism,however,remain unclear.Here,a comprehensive workflow was established to identify the active sites from the numerous possible structures.The common hydroxyl group at the notched edge demonstrates a key role in the two-electron process.The local chemical environment weakens the binding of OOH intermediate to substrate while enhancing interaction with solution,thereby promoting the H_(2)O_(2)production.With increasing pH,the intramolecular hydrogen bond between OOH intermediate and hydroxyl decreases,facilitating OOH desorption.Furthermore,the rise in selectivity with increasing potential stems from the suppression of the four-electron process.The active site was further validated through experiments.Guided by theoretical understanding,optimal performance was achieved with high selectivity(>95%)and current density(2.06 mA/cm^(2))in experiment.展开更多
文摘以产氢量为主要实验指标,基于响应面法BBD模型研究不同影响因素对生物质秸秆酶解光合产氢的影响,考察光合产氢过程中不同影响因素间交互作用的显著性,并对玉米秸秆酶解光合生物制氢工艺进行优化。研究结果表明:p H值、温度和纤维素酶量三因素中,p H值对玉米秸秆酶解光合产氢的影响最大;多因素交互作用中,p H值和温度的交互作用最为显著;采用BBD模型获得的最佳产氢条件为:p H值5.43,温度30.8℃,纤维素酶量70 mg/g,最大产氢量149.39 m L,最大产氢率29.88 m L/g。通过实验对模型进行验证,实际最大产氢量达155.52 m L,产氢率31.11 m L/g,和预测值的误差为4.1%,说明该模型具有较好的拟合性。
基金financially supported by the National Natural Science Foundation of China (Nos.21868016, 21763018,22005296 and 21875096)the Key Laboratory for Environment and Energy Catalysis of Jiangxi Province (No. 20181BCD40004)+1 种基金the Natural Science Foundation of Jiangxi Province (No.20181BAB203016)the Graduate Students Innovation Special Foundation of Jiangxi Province (No.YC2021-B014)。
文摘The catalytic performance is highly related to the catalyst structure.Herein,a series of Ni nanoparticles supported on Y_(2)O_(3) with different morphologies were successfully synthesized via hydrothermal process screening different pH environments.These Ni/Y_(2)O_(3)catalysts were applied to efficiently produce CO_(x)-free H2through ammonia decomposition.We identify a significant impact of Y_(2)O_(3)supports on nickel nanoclusters sizes and dispersion.The experimental results show that Ni/Y11 catalyst achieves 100% ammonia decomposition conversion under a gas hour space velocity(GHSV) of 12,000 ml·h^(-1)·gcat^(-1) and temperature of 650℃.Such a high level of activity over Ni/Y11 catalyst was attributed to a large specific surface area,appropriate alkalinity,and small Ni nanoparticles diameter with high dispersion.
基金financially supported by the National Natural Science Foundation of China(Nos.31540035,61308095,21801092,and 11904128)the Program for the Development of Science and Technology of Jilin Province(Nos.20180520002JH and 20190103100JH)+1 种基金the 13th Five-Year Program for Science and Technology of Education Department of Jilin Province(Nos.JJKH20180769KJ and JJKH20180778KJ)the Graduate Innovation Project of Jilin Normal University(No.201941)。
文摘In this paper,we report our attempts to raise the efficiency of liquid reduction method when using high specific surface area TiO2(HSTiO2)by doping Au.Characterization of Au-HSTiO2 was conducted via XRD,UV-vis,SEM,and photocurrent intensity.The experimental results show that Au-HSTiO2 exhibits prominently higher photocatalytic hydrogen production than TiO2 and HSTiO2.Enhanced photosynthetic hydrogen production ability of Au-HSTiO2 should be attributed to the presence of abundant surface active sites of HSTiO2,remarkably extending electronic holes in Au doping.This study provides a promising photosynthetic material for hydrogen production.
基金supported by the National Natural Science Foundation of China(No.52171022,No.22105214)Zhejiang Provincial Natural Science Foundation of China(Grant No.LXR22B030001)+3 种基金Fujian Institute of Innovation and Chinese Academy of Sciences.K.C.Wong Education Foundation(GJTD-2019-13)the National Key Research and Development Program of China(2019YFB2203400)Ningbo Yongjiang Talent Introduction Programme(2021A-036-B)NingBo S&T Innovation 2025 Major Special Programme(No:2020z059)and the“111 Project”(B20030).
文摘Oxygenated carbon materials exhibit outstanding electrocatalytic performance in the production of hydrogen peroxide(H2O2)through a two-electron oxygen reduction reaction.The nature of the active functional group and underlying reaction mechanism,however,remain unclear.Here,a comprehensive workflow was established to identify the active sites from the numerous possible structures.The common hydroxyl group at the notched edge demonstrates a key role in the two-electron process.The local chemical environment weakens the binding of OOH intermediate to substrate while enhancing interaction with solution,thereby promoting the H_(2)O_(2)production.With increasing pH,the intramolecular hydrogen bond between OOH intermediate and hydroxyl decreases,facilitating OOH desorption.Furthermore,the rise in selectivity with increasing potential stems from the suppression of the four-electron process.The active site was further validated through experiments.Guided by theoretical understanding,optimal performance was achieved with high selectivity(>95%)and current density(2.06 mA/cm^(2))in experiment.