A concrete numerical example of Z6-equivariant planar perturbed Hamiltonian polynomial vector fields of degree 5 having at least 24 limit cycles and the configurations of compound eyes are given by using the bifurcati...A concrete numerical example of Z6-equivariant planar perturbed Hamiltonian polynomial vector fields of degree 5 having at least 24 limit cycles and the configurations of compound eyes are given by using the bifurcation theory of planar dynamical systems and the method of detection functions. There is reason to conjecture that the Hilbert number H(2k + 1) ? (2k + I)2 - 1 for the perturbed Hamiltonian systems.展开更多
In seismic data processing, random noise seriously affects the seismic data quality and subsequently the interpretation. This study aims to increase the signal-to-noise ratio by suppressing random noise and improve th...In seismic data processing, random noise seriously affects the seismic data quality and subsequently the interpretation. This study aims to increase the signal-to-noise ratio by suppressing random noise and improve the accuracy of seismic data interpretation without losing useful information. Hence, we propose a structure-oriented polynomial fitting filter. At the core of structure-oriented filtering is the characterization of the structural trend and the realization of nonstationary filtering. First, we analyze the relation of the frequency response between two-dimensional(2D) derivatives and the 2D Hilbert transform. Then, we derive the noniterative seismic local dip operator using the 2D Hilbert transform to obtain the structural trend. Second, we select polynomial fitting as the nonstationary filtering method and expand the application range of the nonstationary polynomial fitting. Finally, we apply variableamplitude polynomial fitting along the direction of the dip to improve the adaptive structureoriented filtering. Model and field seismic data show that the proposed method suppresses the seismic noise while protecting structural information.展开更多
This paper presents learning rates for the least-square regularized regression algorithms with polynomial kernels. The target is the error analysis for the regression problem in learning theory. A regularization schem...This paper presents learning rates for the least-square regularized regression algorithms with polynomial kernels. The target is the error analysis for the regression problem in learning theory. A regularization scheme is given, which yields sharp learning rates. The rates depend on the dimension of polynomial space and polynomial reproducing kernel Hilbert space measured by covering numbers. Meanwhile, we also establish the direct approximation theorem by Bernstein-Durrmeyer operators in $ L_{\rho _X }^2 $ with Borel probability measure.展开更多
In this paper,we give a complete characterization for the essential normality of quasi-homogenous quotient modules of the Hardy modules H2 (D2).Also,we show that if d 3,then all the principle homogenous quotient modul...In this paper,we give a complete characterization for the essential normality of quasi-homogenous quotient modules of the Hardy modules H2 (D2).Also,we show that if d 3,then all the principle homogenous quotient modules of H 2 (Dd) are not essentially normal.展开更多
Using the framework of formal theory of partial differential equations, we consider a method of computation of the bi-Hilbert polynomial (i.e. Hilbert polynomial in two variables). Furthermore, present an approach to ...Using the framework of formal theory of partial differential equations, we consider a method of computation of the bi-Hilbert polynomial (i.e. Hilbert polynomial in two variables). Furthermore, present an approach to compute the number of arbitrary functions of positive differential order in the general solution. Then, under the "AC=BD" model for mathematics mechanization developed by Hong-qing ZHANG, we present a method to reduce an overdetermined system to a well-determined one. As applications, the Maxwell equations and weakly overdetermined equations are considered.展开更多
This paper studies the model-robust design problem for general models with an unknown bias or contamination and the correlated errors. The true response function is assumed to be from a reproducing kernel Hilbert spac...This paper studies the model-robust design problem for general models with an unknown bias or contamination and the correlated errors. The true response function is assumed to be from a reproducing kernel Hilbert space and the errors are fitted by the qth order moving average process MA(q), especially the MA(1) errors and the MA(2) errors. In both situations, design criteria are derived in terms of the average expected quadratic loss for the least squares estimation by using a minimax method. A case is studied and the orthogonality of the criteria is proved for this special response. The robustness of the design criteria is discussed through several numerical examples.展开更多
The spherical approximation between two nested reproducing kernels Hilbert spaces generated from different smooth kernels is investigated. It is shown that the functions of a space can be approximated by that of the s...The spherical approximation between two nested reproducing kernels Hilbert spaces generated from different smooth kernels is investigated. It is shown that the functions of a space can be approximated by that of the subspace with better smoothness. Furthermore, the upper bound of approximation error is given.展开更多
In this paper, we prove the main result: Let both (K, S) and (K*, S*) be preordered fields, and let (K*, S*) be a finitely generated extension of (K, S). If K* is transcendental over K, then (K*, S*) has the weak Hilb...In this paper, we prove the main result: Let both (K, S) and (K*, S*) be preordered fields, and let (K*, S*) be a finitely generated extension of (K, S). If K* is transcendental over K, then (K*, S*) has the weak Hilbert property. This result answers negatively an open problem posed by the author in reference[1]. Moreover, some results on the weak Hilbert property are established. In this paper, we prove the main result: Let both (K, S) and (K*, S*) be preordered fields, and let (K*, S*) be a finitely generated extension of (K, S). If K* is transcendental over K, then (K*, S*) has the weak Hilbert property. This result answers negatively an open problem posed by the author in reference [1]. Moreover, some results on the weak Hilbert property are established.展开更多
基金This work was supported by the Strategic Research (Grant No. 7000934) from the City University of Hong Kong.
文摘A concrete numerical example of Z6-equivariant planar perturbed Hamiltonian polynomial vector fields of degree 5 having at least 24 limit cycles and the configurations of compound eyes are given by using the bifurcation theory of planar dynamical systems and the method of detection functions. There is reason to conjecture that the Hilbert number H(2k + 1) ? (2k + I)2 - 1 for the perturbed Hamiltonian systems.
基金Research supported by the 863 Program of China(No.2012AA09A20103)the National Natural Science Foundation of China(No.41274119,No.41174080,and No.41004041)
文摘In seismic data processing, random noise seriously affects the seismic data quality and subsequently the interpretation. This study aims to increase the signal-to-noise ratio by suppressing random noise and improve the accuracy of seismic data interpretation without losing useful information. Hence, we propose a structure-oriented polynomial fitting filter. At the core of structure-oriented filtering is the characterization of the structural trend and the realization of nonstationary filtering. First, we analyze the relation of the frequency response between two-dimensional(2D) derivatives and the 2D Hilbert transform. Then, we derive the noniterative seismic local dip operator using the 2D Hilbert transform to obtain the structural trend. Second, we select polynomial fitting as the nonstationary filtering method and expand the application range of the nonstationary polynomial fitting. Finally, we apply variableamplitude polynomial fitting along the direction of the dip to improve the adaptive structureoriented filtering. Model and field seismic data show that the proposed method suppresses the seismic noise while protecting structural information.
文摘This paper presents learning rates for the least-square regularized regression algorithms with polynomial kernels. The target is the error analysis for the regression problem in learning theory. A regularization scheme is given, which yields sharp learning rates. The rates depend on the dimension of polynomial space and polynomial reproducing kernel Hilbert space measured by covering numbers. Meanwhile, we also establish the direct approximation theorem by Bernstein-Durrmeyer operators in $ L_{\rho _X }^2 $ with Borel probability measure.
基金supported by National Natural Science Foundation of China(Grant Nos.11101240and10831007)Laboratory of Mathematics for Nonlinear Science of Fudan UniversityIndependent Innovation Foundation of Shandong University
文摘In this paper,we give a complete characterization for the essential normality of quasi-homogenous quotient modules of the Hardy modules H2 (D2).Also,we show that if d 3,then all the principle homogenous quotient modules of H 2 (Dd) are not essentially normal.
基金supported by the National Basic Research Program of China(Grant No. 2004CB318000)the "Math+X" Fund of Dalian University of Technology
文摘Using the framework of formal theory of partial differential equations, we consider a method of computation of the bi-Hilbert polynomial (i.e. Hilbert polynomial in two variables). Furthermore, present an approach to compute the number of arbitrary functions of positive differential order in the general solution. Then, under the "AC=BD" model for mathematics mechanization developed by Hong-qing ZHANG, we present a method to reduce an overdetermined system to a well-determined one. As applications, the Maxwell equations and weakly overdetermined equations are considered.
基金Supported by NSFC grant(10671129)the Special Funds for Doctoral Authorities of Education Ministry(20060270002)+1 种基金E-Institutes of Shanghai Municipal Education Commission(E03004)Shanghai Leading Academic Discipline Project(S30405)
文摘This paper studies the model-robust design problem for general models with an unknown bias or contamination and the correlated errors. The true response function is assumed to be from a reproducing kernel Hilbert space and the errors are fitted by the qth order moving average process MA(q), especially the MA(1) errors and the MA(2) errors. In both situations, design criteria are derived in terms of the average expected quadratic loss for the least squares estimation by using a minimax method. A case is studied and the orthogonality of the criteria is proved for this special response. The robustness of the design criteria is discussed through several numerical examples.
基金the NSFC(60473034)the Science Foundation of Zhejiang Province(Y604003).
文摘The spherical approximation between two nested reproducing kernels Hilbert spaces generated from different smooth kernels is investigated. It is shown that the functions of a space can be approximated by that of the subspace with better smoothness. Furthermore, the upper bound of approximation error is given.
基金Project supported by National Natural Science Foundation of China
文摘In this paper, we prove the main result: Let both (K, S) and (K*, S*) be preordered fields, and let (K*, S*) be a finitely generated extension of (K, S). If K* is transcendental over K, then (K*, S*) has the weak Hilbert property. This result answers negatively an open problem posed by the author in reference[1]. Moreover, some results on the weak Hilbert property are established. In this paper, we prove the main result: Let both (K, S) and (K*, S*) be preordered fields, and let (K*, S*) be a finitely generated extension of (K, S). If K* is transcendental over K, then (K*, S*) has the weak Hilbert property. This result answers negatively an open problem posed by the author in reference [1]. Moreover, some results on the weak Hilbert property are established.