期刊文献+

Learning rates of least-square regularized regression with polynomial kernels 被引量:3

Learning rates of least-square regularized regression with polynomial kernels
原文传递
导出
摘要 This paper presents learning rates for the least-square regularized regression algorithms with polynomial kernels. The target is the error analysis for the regression problem in learning theory. A regularization scheme is given, which yields sharp learning rates. The rates depend on the dimension of polynomial space and polynomial reproducing kernel Hilbert space measured by covering numbers. Meanwhile, we also establish the direct approximation theorem by Bernstein-Durrmeyer operators in $ L_{\rho _X }^2 $ with Borel probability measure. This paper presents learning rates for the least-square regularized regression algorithms with polynomial kernels. The target is the error analysis for the regression problem in learning theory. A regularization scheme is given, which yields sharp learning rates. The rates depend on the dimension of polynomial space and polynomial reproducing kernel Hilbert space measured by covering numbers. Meanwhile, we also establish the direct approximation theorem by Bernstein-Durrmeyer operators in Lρ2X with Borel probability measure.
出处 《Science China Mathematics》 SCIE 2009年第4期687-700,共14页 中国科学:数学(英文版)
关键词 learning theory reproducing kernel Hilbert space polynomial kernel regularization error Bernstein-Durrmeyer operators covering number regularization scheme 68T05 62J02 learning theory reproducing kernel Hilbert space polynomial kernel regularization error Bernstein-Durrmeyer operators covering number regularization scheme
  • 相关文献

参考文献16

  • 1Ding-Xuan Zhou,Kurt Jetter.Approximation with polynomial kernels and SVM classifiers[J]. Advances in Computational Mathematics . 2006 (1-3) 被引量:1
  • 2Qiang Wu,Yiming Ying,Ding-Xuan Zhou.Learning Rates of Least-Square Regularized Regression[J]. Foundations of Computational Mathematics . 2006 (2) 被引量:1
  • 3Theodoros Evgeniou,Massimiliano Pontil,Tomaso Poggio.Regularization Networks and Support Vector Machines[J]. Advances in Computational Mathematics . 2000 (1) 被引量:1
  • 4Cucker F,Zhou D X.Learning Theory: An Approximation Theory Viewpoint. Cambridge Monographs on Applied and Computational Mathematics . 2007 被引量:1
  • 5Schaback R.Mathematical results concerning kernel techniques. Proceedings of the 13th IFAC Sympo- sium on System Identification . 2003 被引量:1
  • 6Ditzian Z.Rate of convergence for Bernstein polynomials, revisited. Journal of Approximation Theory . 1987 被引量:1
  • 7Cucker,F.,Smale,S.On the mathematical foundations of learning. Bulletin of the American Mathematical Society . 2001 被引量:1
  • 8Q. Wu,Y. Ying,and D. X. Zhou.Learning rates of least-square regularized regression. Foundations of Computational Mathematics . 2006 被引量:1
  • 9Aronszajn,N.Theory of reproducing kernels. Transactions of the American Mathematical Society . 1950 被引量:1
  • 10Steinwart,I.,Scovel,C.Fast rates for support vector machines using Gaussian kernels. The Annals of Statistics . 2007 被引量:1

同被引文献16

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部