The measurement of position and attitude parameters for the isolated target from a highspeed aircraft is a great challenge in the field of wind tunnel simulation technology.In this paper,firstly, an image acquisition ...The measurement of position and attitude parameters for the isolated target from a highspeed aircraft is a great challenge in the field of wind tunnel simulation technology.In this paper,firstly, an image acquisition method for small high-speed targets with multi-dimensional movement in wind tunnel environment is proposed based on laser-aided vision technology.Combining with the trajectory simulation of the isolated model, the reasonably distributed laser stripes and selfluminous markers are utilized to capture clear images of the object.Then, after image processing,feature extraction, stereo correspondence and reconstruction, three-dimensional information of laser stripes and self-luminous markers are calculated.Besides, a pose solution method based on projected laser stripes and self-luminous markers is proposed.Finally, simulation experiments on measuring the position and attitude of high-speed rolling targets are conducted, as well as accuracy verification experiments.Experimental results indicate that the proposed method is feasible and efficient for measuring the pose parameters of rolling targets in wind tunnels.展开更多
The measurement of position and attitude parameters for the isolated target from a highspeed aircraft is a great challenge in the field of wind tunnel simulation technology. This paper proposes a remote-controlled fle...The measurement of position and attitude parameters for the isolated target from a highspeed aircraft is a great challenge in the field of wind tunnel simulation technology. This paper proposes a remote-controlled flexible pose measurement system in wind tunnel conditions for the separation of a target from an aircraft. The position and attitude parameters of a moving object are obtained by utilizing a single camera with a focal length and camera orientation that can be changed based on different measurement conditions. Using this proposed system and method, both the flexibility and efficiency of the pose measurement system can be enhanced in wind tunnel conditions to meet the measurement requirements of different objects and experiments, which is also useful for the development of an intelligent position and attitude measurement system. The position and the focal length of the camera also can be controlled remotely during measurements to enlarge both the vertical and horizontal measurement range of this system. Experiments are conducted in the laboratory to measure the position and attitude of moving objects with high flexibility and efficiency, and the measurement precision of the measurement system is also verified through experiments.展开更多
基金supported by the National Natural Science Foundation of China (Nos.51375075, 51227004)the Scientific Research Fund of Liaoning Provincial Education Department of China (No.L2013035)the Science Fund for Creative Research Groups of China (No.51321004)
文摘The measurement of position and attitude parameters for the isolated target from a highspeed aircraft is a great challenge in the field of wind tunnel simulation technology.In this paper,firstly, an image acquisition method for small high-speed targets with multi-dimensional movement in wind tunnel environment is proposed based on laser-aided vision technology.Combining with the trajectory simulation of the isolated model, the reasonably distributed laser stripes and selfluminous markers are utilized to capture clear images of the object.Then, after image processing,feature extraction, stereo correspondence and reconstruction, three-dimensional information of laser stripes and self-luminous markers are calculated.Besides, a pose solution method based on projected laser stripes and self-luminous markers is proposed.Finally, simulation experiments on measuring the position and attitude of high-speed rolling targets are conducted, as well as accuracy verification experiments.Experimental results indicate that the proposed method is feasible and efficient for measuring the pose parameters of rolling targets in wind tunnels.
基金co-supported by the National Natural Science Foundation-Outstanding Youth Foundation of China (No. 51622501)the National Natural Science Foundation of China (Nos. 51375075 and 51227004)+1 种基金the Fundamental Research Funds for the Central Universities of Chinathe Science Fund for Creative Research Groups of China (No. 51321004)
文摘The measurement of position and attitude parameters for the isolated target from a highspeed aircraft is a great challenge in the field of wind tunnel simulation technology. This paper proposes a remote-controlled flexible pose measurement system in wind tunnel conditions for the separation of a target from an aircraft. The position and attitude parameters of a moving object are obtained by utilizing a single camera with a focal length and camera orientation that can be changed based on different measurement conditions. Using this proposed system and method, both the flexibility and efficiency of the pose measurement system can be enhanced in wind tunnel conditions to meet the measurement requirements of different objects and experiments, which is also useful for the development of an intelligent position and attitude measurement system. The position and the focal length of the camera also can be controlled remotely during measurements to enlarge both the vertical and horizontal measurement range of this system. Experiments are conducted in the laboratory to measure the position and attitude of moving objects with high flexibility and efficiency, and the measurement precision of the measurement system is also verified through experiments.