To understand the characteristics of the plasma sheath within small tubes,a 2D numerical model of He discharge within dielectric tubes is developed.During plasma propagation for a tube diameter of 0.05 mm,the sheath t...To understand the characteristics of the plasma sheath within small tubes,a 2D numerical model of He discharge within dielectric tubes is developed.During plasma propagation for a tube diameter of 0.05 mm,the sheath thickness in the plasma head is almost equal to the tube radius.It decreases rapidly to several micrometers at an axial distance of 0.05 mm behind the plasma head,and then slightly increases and saturates at the axial position far behind the plasma head.A plasma-gas sheath surrounding the central plasma column is observed for a tube diameter equal to or greater than 0.8 mm.It is replaced by a plasma-wall sheath for smaller tubes.With the decrease in the tube diameter,the sheath thickness far behind the plasma head decreases while the ion flux increases significantly.However,when O_(2)gas with a proportion of 2%is added,both the sheath thickness and ion flux decrease.展开更多
In this paper,we discuss the properties of ionization waves(IWs)in a multi-pulsed plasma jet while using the two-dimensional computational approach.The IWs are generated by application of three short negative pulses w...In this paper,we discuss the properties of ionization waves(IWs)in a multi-pulsed plasma jet while using the two-dimensional computational approach.The IWs are generated by application of three short negative pulses with a repetition frequency 12.5 MHz.The simulations are performed continuously during a single run while accounting for charges accumulated inside(surface charges)and outside(space charges)the tube.The plasma forming gas mixture(He/O2=99.8%/0.2%)is injected through the discharge tube into the surrounding humid air.We show that an IW can emerge from the tube exit at a pulse rising edge(as a negative IW)and at a falling edge of the same pulse(as a positive IW).It is demonstrated that remnants of the negative and positive charges play an essential role in the discharge evolution.The first pulse travels the shortest distance as it propagates through the initially non-ionized environment.The IWs developing during the second pulse essentially enlarge the plasma plume length.At the same time,the IWs generated by the third pulse eventually decay due to the remnants of charges accumulated during the previous pulses.Accumulated memory charges can lead to the IW extinction.展开更多
A fiberform nanostructure was synthesized by exposing high-density helium plasma to a 100 nm thick tungsten thin film in the linear plasma device NAGDIS-II.After helium plasma exposure,the cross-section of samples was...A fiberform nanostructure was synthesized by exposing high-density helium plasma to a 100 nm thick tungsten thin film in the linear plasma device NAGDIS-II.After helium plasma exposure,the cross-section of samples was observed by a scanning electron microscope,transmission electron microscope,and focused ion beam scanning electron microscope.It is shown that the thickness of the nanostructured layer increases significantly for only a short irradiation time.The optical absorptivity remains high,even though it is exposed to helium plasma for a short time.The usage of the thin film can shorten the processing time for nanostructure growth,which will be beneficial for commercial production.展开更多
The generation of runaway electrons(REs)is observed during the low-density helium ohmic plasma discharge in the Experimental Advanced Superconducting Tokamak(EAST).The growth rate of hard x-ray(HXR)is inversely propor...The generation of runaway electrons(REs)is observed during the low-density helium ohmic plasma discharge in the Experimental Advanced Superconducting Tokamak(EAST).The growth rate of hard x-ray(HXR)is inversely proportional to the line-average density.Besides,the RE generation in helium plasma is higher than that in deuterium plasma at the same density,which is obtained by comparing the growth rate of HXR with the same discharge conditions.The potential reason is the higher electron temperature of helium plasma in the same current and electron density plateau.Furthermore,two Alfvén eigenmodes driven by REs have been observed.The frequency evolution of the mode is not fully satisfied with the Alfvén scaling and when extension of the Alfvén frequency is towards 0,the high frequency branch is~50 kHz.The different spatial position of the two modes and the evolution of the helium concentration could be used to understand deviation between theoretical and experimental observation.展开更多
UV-pulsed laser cavity ringdown spectroscopy of the hydroxyl radical OH(A–X)(0–0)band in the wavelength range of 306–310 nm was employed to determine absolute number densities of OH in the atmospheric helium plasma...UV-pulsed laser cavity ringdown spectroscopy of the hydroxyl radical OH(A–X)(0–0)band in the wavelength range of 306–310 nm was employed to determine absolute number densities of OH in the atmospheric helium plasma jets generated by a 2.45 GHz microwave plasma source.The effect of the addition of molecular gases N2 and O2 to He plasma jets on OH generation was studied.Optical emission spectroscopy was simultaneously employed to monitor reactive plasma species.Stark broadening of the hydrogen Balmer emission line(Hβ)was used to estimate the electron density ne in the jets.For both He/N2 and He/O2 jets,ne was estimated to be on the order of 10^15 cm^?3.The effects of plasma power and gas flow rate were also studied.With increase in N2 and O2 flow rates,ne tended to decrease.Gas temperature in the He/O2 plasma jets was elevated compared to the temperatures in the pure He and He/N2 plasma jets.The highest OH densities in the He/N2 and He/O2 plasma jets were determined to be 1.0×10^16 molecules/cm^3 at x=4 mm(from the jet orifice)and 1.8×10^16 molecules/cm^3 at x=3 mm,respectively.Electron impact dissociation of water and water ion dissociative recombination were the dominant reaction pathways,respectively,for OH formation within the jet column and in the downstream and far downstream regions.The presence of strong emissions of the N2^+ bands in both He/N2 and He/O2 plasma jets,as against the absence of the N2^+ emissions in the Ar plasma jets,suggests that the Penning ionization process is a key reaction channel leading to the formation of N2^+ in these He plasma jets.展开更多
Through the use of time and space integrated kiloelectronvolt (keV) spectroscopy, we investigate the thermal emission of plasma, which produces strong line emission from the titanium K shell (He-a at 4.7 keV and H-...Through the use of time and space integrated kiloelectronvolt (keV) spectroscopy, we investigate the thermal emission of plasma, which produces strong line emission from the titanium K shell (He-a at 4.7 keV and H-α at 4.9 keV), created by laser. In order to optimize the conversion efficiency enhancement on titanium foils, the experiment is conducted under a variety of laser-driven intensity conditions. The X-ray emission intensity at 4.7 keV is measured and compared with prediction. The experimental result demonstrates that the solid Ti target laser-produced plasma (LPP) source has X-ray emission at 4.7 keV, which are all generated from electronic transitions in Ti ions at pulse width of 2.1 ns or 30 ps, the crudely evaluated He-α X-ray intensity appears to slightly increase with laser intensity enhancement, and the pre- pulse effect increases the conversion efficiency of the He-α X-ray. In addition, a 90-μm-thick Ti foil as a filter is used to transmit He-α X-ray at near 4.7 keV, creating a quasi-monochromatic transmission and greatly reducing the lower- and higher-energy background.展开更多
The change in surface damage/microstructures and its effects on the hydrogen(H)isotope/helium(He)dynamic behavior are the key factors for investigating issues of tungsten(W)-based plasma-facing materials(PFMs)in fusio...The change in surface damage/microstructures and its effects on the hydrogen(H)isotope/helium(He)dynamic behavior are the key factors for investigating issues of tungsten(W)-based plasma-facing materials(PFMs)in fusion such as surface erosion,H/He retention and tritium(T)inventory.Complex surface damage/microstructures are introduced in W by high-temperature plasma irradiation and new material design,typically including pre-damage and multi-ion co-deposition induced structures,solute elements and related composites,native defects like dislocations and interfaces,and nanostructures.Systematic experimental and theoretical researches were performed on H isotope/He retention in complex W-based materials in the past decades.In this review,we aim to provide an overview of typical surface damage/microstructures and their effects on H/He retention in W,both in the experiment and multiscale modeling.The distribution/state,dynamics evolution,and interaction with defects/microstructures of H/He are generally summarized at different scales.Finally,the current difficulties,challenges and future directions are also discussed about H/He retention in complex W-based PFMs.展开更多
Tungsten,a leading candidate for plasma-facing materials(PFM) in future fusion devices,will be exposed to high-flux low-energy helium plasma under the anticipated fusion operation conditions.In the past two decades,ex...Tungsten,a leading candidate for plasma-facing materials(PFM) in future fusion devices,will be exposed to high-flux low-energy helium plasma under the anticipated fusion operation conditions.In the past two decades,experiments have revealed that exposure to helium plasma strongly modifies the surface morphology and hence the sputtering,thermal and other properties of tungsten,posing a serious danger to the performance and lifetime of tungsten and the steadystate operation of plasma.In this article,we provide a review of modeling and simulation efforts on the long-term evolution of helium bubbles,surface morphology,and property changes of tungsten exposed to low-energy helium plasma.The current gap and outstanding challenges to establish a predictive modeling capability for dynamic evolution of PFM are discussed.展开更多
The low-k carbon doped silica film has been modified by radio frequency helium plasma at 5 Pa pressure and 80 W power with subsequent XPS, FTIR and optical emission spec- troscopy analysis. XPS data indicate that heli...The low-k carbon doped silica film has been modified by radio frequency helium plasma at 5 Pa pressure and 80 W power with subsequent XPS, FTIR and optical emission spec- troscopy analysis. XPS data indicate that helium ions have broken Si-C bonds, leading to Si-C scission with C(1s) lost seriously. The Si(2p), O(ls), peak obviously shifted to higher binding en- ergies, indicating an increasingly oxidized Si(2p). FTIR data also show that the silanol formation increased with longer exposure time up to a week. Contrarily, the CHa stretch, Si-C stretching bond and the ratio of the Si-O-Si cage and Si-O-Si network peak sharply decreased upon exposure to helium plasma. The OES result indicates that monovalent helium ions in plasma play a key role in damaging carbon doped silica film. So it can be concluded that the monovalent helium ions besides VUV photons can break the weak Si-C bonds to create Si dangling bonds and free methyl radicals, and the latter easily reacts with O_2 from the atmosphere to generate CO_2 and H_2O. The bonds change is due to the Si dangling bonds combining with H_2O, thereby, increasing the dielectric constant k value.展开更多
To study helium(He)supersonic molecular beam injection(SMBI)into H-mode tokamak plasma,a simplified multicomponent-plasma model under the assumption of quasi-neutral condition is developed and implemented in the frame...To study helium(He)supersonic molecular beam injection(SMBI)into H-mode tokamak plasma,a simplified multicomponent-plasma model under the assumption of quasi-neutral condition is developed and implemented in the frame of BOUT++.The simulation results show that He species propagate inwards after He SMBI,and are deposited at the bottom of the pedestal due to intensive ionization and weak spreading speed.It is found that almost all injected helium particles strip off all the bounded electrons.He species interact intensively with background plasma along the injection path during He SMBI,making deuterium ion density profile drop at the He-deposited location and resulting in a large electron temperature decreasing,but deuterium ion temperature decreasing a little at the top of the pedestal.展开更多
Detachment in helium(He)discharges has been achieved in the EAST superconducting tokamak equipped with an ITER-like tungsten divertor.This paper presents the experimental observations of divertor detachment achieved b...Detachment in helium(He)discharges has been achieved in the EAST superconducting tokamak equipped with an ITER-like tungsten divertor.This paper presents the experimental observations of divertor detachment achieved by increasing the plasma density in He discharges.During density ramp-up,the particle flux shows a clear rollover,while the electron temperature around the outer strike point is decreasing simultaneously.The divertor detachment also exhibits a significant difference from that observed in comparable deuterium(D)discharges.The density threshold of detachment in the He plasma is higher than that in the D plasma for the same heating power,and increases with the heating power.Moreover,detachment assisted with neon(Ne)seeding was also performed in L-and H-mode plasmas,pointing to the direction for reducing the density threshold of detachment in He operation.However,excessive Ne seeding causes confinement degradation during the divertor detachment phase.The precise feedback control of impurity seeding will be performed in EAST to improve the compatibility of core plasma performance with divertor detachment for future high heating power operations.展开更多
基金supported by National Natural Science Foundation of China(No.51977110)。
文摘To understand the characteristics of the plasma sheath within small tubes,a 2D numerical model of He discharge within dielectric tubes is developed.During plasma propagation for a tube diameter of 0.05 mm,the sheath thickness in the plasma head is almost equal to the tube radius.It decreases rapidly to several micrometers at an axial distance of 0.05 mm behind the plasma head,and then slightly increases and saturates at the axial position far behind the plasma head.A plasma-gas sheath surrounding the central plasma column is observed for a tube diameter equal to or greater than 0.8 mm.It is replaced by a plasma-wall sheath for smaller tubes.With the decrease in the tube diameter,the sheath thickness far behind the plasma head decreases while the ion flux increases significantly.However,when O_(2)gas with a proportion of 2%is added,both the sheath thickness and ion flux decrease.
基金supported by the Ministry of Science and Higher Education of the Russian Federation(No.075-15-2021-1026 of November 15,2021)jointly by the National Key Research and Development Plan of China(No.2021YFE0114700)。
文摘In this paper,we discuss the properties of ionization waves(IWs)in a multi-pulsed plasma jet while using the two-dimensional computational approach.The IWs are generated by application of three short negative pulses with a repetition frequency 12.5 MHz.The simulations are performed continuously during a single run while accounting for charges accumulated inside(surface charges)and outside(space charges)the tube.The plasma forming gas mixture(He/O2=99.8%/0.2%)is injected through the discharge tube into the surrounding humid air.We show that an IW can emerge from the tube exit at a pulse rising edge(as a negative IW)and at a falling edge of the same pulse(as a positive IW).It is demonstrated that remnants of the negative and positive charges play an essential role in the discharge evolution.The first pulse travels the shortest distance as it propagates through the initially non-ionized environment.The IWs developing during the second pulse essentially enlarge the plasma plume length.At the same time,the IWs generated by the third pulse eventually decay due to the remnants of charges accumulated during the previous pulses.Accumulated memory charges can lead to the IW extinction.
文摘A fiberform nanostructure was synthesized by exposing high-density helium plasma to a 100 nm thick tungsten thin film in the linear plasma device NAGDIS-II.After helium plasma exposure,the cross-section of samples was observed by a scanning electron microscope,transmission electron microscope,and focused ion beam scanning electron microscope.It is shown that the thickness of the nanostructured layer increases significantly for only a short irradiation time.The optical absorptivity remains high,even though it is exposed to helium plasma for a short time.The usage of the thin film can shorten the processing time for nanostructure growth,which will be beneficial for commercial production.
基金Project supported by the National Key R&D Program of China(Grant Nos.2017YFE0301205 and 2022YFE03050003)the Youth Innovation Promotion Association of Chinese Academy of Sciences(Grant No.Y2021116)+1 种基金the National Natural Science Foundation of China(Grant Nos.12005262,12105186,12175277,and 11975271)the Users of Excellence Program of Hefei Science Center CAS(Grant No.2021HSC-UE016).
文摘The generation of runaway electrons(REs)is observed during the low-density helium ohmic plasma discharge in the Experimental Advanced Superconducting Tokamak(EAST).The growth rate of hard x-ray(HXR)is inversely proportional to the line-average density.Besides,the RE generation in helium plasma is higher than that in deuterium plasma at the same density,which is obtained by comparing the growth rate of HXR with the same discharge conditions.The potential reason is the higher electron temperature of helium plasma in the same current and electron density plateau.Furthermore,two Alfvén eigenmodes driven by REs have been observed.The frequency evolution of the mode is not fully satisfied with the Alfvén scaling and when extension of the Alfvén frequency is towards 0,the high frequency branch is~50 kHz.The different spatial position of the two modes and the evolution of the helium concentration could be used to understand deviation between theoretical and experimental observation.
基金supported by the National Science Foundation through the grant CBET-1066486
文摘UV-pulsed laser cavity ringdown spectroscopy of the hydroxyl radical OH(A–X)(0–0)band in the wavelength range of 306–310 nm was employed to determine absolute number densities of OH in the atmospheric helium plasma jets generated by a 2.45 GHz microwave plasma source.The effect of the addition of molecular gases N2 and O2 to He plasma jets on OH generation was studied.Optical emission spectroscopy was simultaneously employed to monitor reactive plasma species.Stark broadening of the hydrogen Balmer emission line(Hβ)was used to estimate the electron density ne in the jets.For both He/N2 and He/O2 jets,ne was estimated to be on the order of 10^15 cm^?3.The effects of plasma power and gas flow rate were also studied.With increase in N2 and O2 flow rates,ne tended to decrease.Gas temperature in the He/O2 plasma jets was elevated compared to the temperatures in the pure He and He/N2 plasma jets.The highest OH densities in the He/N2 and He/O2 plasma jets were determined to be 1.0×10^16 molecules/cm^3 at x=4 mm(from the jet orifice)and 1.8×10^16 molecules/cm^3 at x=3 mm,respectively.Electron impact dissociation of water and water ion dissociative recombination were the dominant reaction pathways,respectively,for OH formation within the jet column and in the downstream and far downstream regions.The presence of strong emissions of the N2^+ bands in both He/N2 and He/O2 plasma jets,as against the absence of the N2^+ emissions in the Ar plasma jets,suggests that the Penning ionization process is a key reaction channel leading to the formation of N2^+ in these He plasma jets.
基金supported by the National "863" Program of China under Grant No. 2006AA804312
文摘Through the use of time and space integrated kiloelectronvolt (keV) spectroscopy, we investigate the thermal emission of plasma, which produces strong line emission from the titanium K shell (He-a at 4.7 keV and H-α at 4.9 keV), created by laser. In order to optimize the conversion efficiency enhancement on titanium foils, the experiment is conducted under a variety of laser-driven intensity conditions. The X-ray emission intensity at 4.7 keV is measured and compared with prediction. The experimental result demonstrates that the solid Ti target laser-produced plasma (LPP) source has X-ray emission at 4.7 keV, which are all generated from electronic transitions in Ti ions at pulse width of 2.1 ns or 30 ps, the crudely evaluated He-α X-ray intensity appears to slightly increase with laser intensity enhancement, and the pre- pulse effect increases the conversion efficiency of the He-α X-ray. In addition, a 90-μm-thick Ti foil as a filter is used to transmit He-α X-ray at near 4.7 keV, creating a quasi-monochromatic transmission and greatly reducing the lower- and higher-energy background.
基金This work was financially supported by the National Natural Science Foundation of China(Grant Nos.11975018,11775254 and 11534012)the National Magnetic Confinement Fusion Energy Research Project(Grant No.2018YEF0308100)+2 种基金the Science Challenge Project(Grant No.TZ2018004)the Youth Innovation Promotion Association of Chinese Academy of Sciences(CAS)(Grant No.2016386)Director Grants of Hefei Institutes of Physics Science,Chinese Academy of Sciences(CASHIPS).
文摘The change in surface damage/microstructures and its effects on the hydrogen(H)isotope/helium(He)dynamic behavior are the key factors for investigating issues of tungsten(W)-based plasma-facing materials(PFMs)in fusion such as surface erosion,H/He retention and tritium(T)inventory.Complex surface damage/microstructures are introduced in W by high-temperature plasma irradiation and new material design,typically including pre-damage and multi-ion co-deposition induced structures,solute elements and related composites,native defects like dislocations and interfaces,and nanostructures.Systematic experimental and theoretical researches were performed on H isotope/He retention in complex W-based materials in the past decades.In this review,we aim to provide an overview of typical surface damage/microstructures and their effects on H/He retention in W,both in the experiment and multiscale modeling.The distribution/state,dynamics evolution,and interaction with defects/microstructures of H/He are generally summarized at different scales.Finally,the current difficulties,challenges and future directions are also discussed about H/He retention in complex W-based PFMs.
基金supported by National Natural Science Foundation of China(No.11905071)the National MCF Energy R&D Program(No.2018YFE0308103)
文摘Tungsten,a leading candidate for plasma-facing materials(PFM) in future fusion devices,will be exposed to high-flux low-energy helium plasma under the anticipated fusion operation conditions.In the past two decades,experiments have revealed that exposure to helium plasma strongly modifies the surface morphology and hence the sputtering,thermal and other properties of tungsten,posing a serious danger to the performance and lifetime of tungsten and the steadystate operation of plasma.In this article,we provide a review of modeling and simulation efforts on the long-term evolution of helium bubbles,surface morphology,and property changes of tungsten exposed to low-energy helium plasma.The current gap and outstanding challenges to establish a predictive modeling capability for dynamic evolution of PFM are discussed.
基金supported by Shenyang Science and Technology Plan of China(No.F12028200)
文摘The low-k carbon doped silica film has been modified by radio frequency helium plasma at 5 Pa pressure and 80 W power with subsequent XPS, FTIR and optical emission spec- troscopy analysis. XPS data indicate that helium ions have broken Si-C bonds, leading to Si-C scission with C(1s) lost seriously. The Si(2p), O(ls), peak obviously shifted to higher binding en- ergies, indicating an increasingly oxidized Si(2p). FTIR data also show that the silanol formation increased with longer exposure time up to a week. Contrarily, the CHa stretch, Si-C stretching bond and the ratio of the Si-O-Si cage and Si-O-Si network peak sharply decreased upon exposure to helium plasma. The OES result indicates that monovalent helium ions in plasma play a key role in damaging carbon doped silica film. So it can be concluded that the monovalent helium ions besides VUV photons can break the weak Si-C bonds to create Si dangling bonds and free methyl radicals, and the latter easily reacts with O_2 from the atmosphere to generate CO_2 and H_2O. The bonds change is due to the Si dangling bonds combining with H_2O, thereby, increasing the dielectric constant k value.
基金Chunhui Program of the Ministry of Education of China(Grant No.Z2017091)the Sichuan Provincial Science Foundation for Distinguished Young Leaders of Disciplines in Science and Technology,China(Grant Nos.2019JDJQ0051 and 2019JDJQ0050)+2 种基金the National Natural Science Foundation of China(Grant Nos.11575055 and 11605143)the Fund for Young Scientists of China,the Open Research Subjects of the Key Laboratory of Advanced Computation in Xihua University,China(Grant Nos.szjj2017-011 and szjj2017-012)the Young Scholarship Plan of Xihua University,China(Grant No.0220170201).
文摘To study helium(He)supersonic molecular beam injection(SMBI)into H-mode tokamak plasma,a simplified multicomponent-plasma model under the assumption of quasi-neutral condition is developed and implemented in the frame of BOUT++.The simulation results show that He species propagate inwards after He SMBI,and are deposited at the bottom of the pedestal due to intensive ionization and weak spreading speed.It is found that almost all injected helium particles strip off all the bounded electrons.He species interact intensively with background plasma along the injection path during He SMBI,making deuterium ion density profile drop at the He-deposited location and resulting in a large electron temperature decreasing,but deuterium ion temperature decreasing a little at the top of the pedestal.
基金supported by the National Key Research and Development Program of China(Nos.2017YFA0301300,2017YFE0402500 and 2019YFE03030000)National Natural Science Foundation of China(Nos.11905255,12005004,12022511,U1867222 and U19A20113)+3 种基金the Institute of Energy,Hefei Comprehensive National Science Center(No.GXXT-2020-004)AHNSF(No.2008085QA38)the CASHIPS Director’s Fund(No.BJPY2019B01)the Key Research Program of Frontier Sciences of CAS(No.ZDBS-LY-SLH010)。
文摘Detachment in helium(He)discharges has been achieved in the EAST superconducting tokamak equipped with an ITER-like tungsten divertor.This paper presents the experimental observations of divertor detachment achieved by increasing the plasma density in He discharges.During density ramp-up,the particle flux shows a clear rollover,while the electron temperature around the outer strike point is decreasing simultaneously.The divertor detachment also exhibits a significant difference from that observed in comparable deuterium(D)discharges.The density threshold of detachment in the He plasma is higher than that in the D plasma for the same heating power,and increases with the heating power.Moreover,detachment assisted with neon(Ne)seeding was also performed in L-and H-mode plasmas,pointing to the direction for reducing the density threshold of detachment in He operation.However,excessive Ne seeding causes confinement degradation during the divertor detachment phase.The precise feedback control of impurity seeding will be performed in EAST to improve the compatibility of core plasma performance with divertor detachment for future high heating power operations.