A cluster dynamics model based on rate theory has been developed to describe the accumulation and diffusion processes of helium in tungsten under helium implantation alone or synergistic irradiationwith neutron,by inv...A cluster dynamics model based on rate theory has been developed to describe the accumulation and diffusion processes of helium in tungsten under helium implantation alone or synergistic irradiationwith neutron,by involving different types of objects,adopting up-to-date parameters and complex reaction processes as well as considering the diffusion process along with depth.The calculated results under different conditions are in good agreement with experiments much well.The model describes the behavior of helium in tungsten within 2D space of defect type/size and depth on different ions incident conditions(energies and fluences)and material conditions(system temperature and existent sinks),by including the synergistic effect of helium-neutron irradiations and the influence of inherent sinks(dislocation lines and grain boundaries).The model,coded as IRadMat,would be universally applicable to the evolution of defects for ions/neutron irradiated on plasma-facing materials.展开更多
The tritium quantity stored in a steel pressure vessel decreases with time because of helium-3 decay and permeation of tritium into the steel wall of the pressure vessel.Meanwhile,the tritium quantity permeating into ...The tritium quantity stored in a steel pressure vessel decreases with time because of helium-3 decay and permeation of tritium into the steel wall of the pressure vessel.Meanwhile,the tritium quantity permeating into the steel wall also decreases with time due to helium-3 decay and diffusion in and out of the wall of tritium.Tritium and helium-3 in the steel wall will cause hydrogen and helium embrittlement of the wall material,respectively,and thereby change the carrying capacity of the vessel.Taking contemporarily both decay and permeation of tritium within the vessel and decay and diffusion of tritium having permeated into the wall into consideration,the governing equations of tritium and helium-3 contents in the wall were established and solved,and relevant formulas were deduced.Through analytical calculations,curves of tritium and helium-3 contents versus radius and time were theoretically plotted,the contents spatio-temporal distributions laws were obtained,and a law about helium-3 contents distribution in steel wall of a spherical pressure vessel was discovered which was called the law of double helium-3 content.展开更多
To gain a better quantitative understanding of zircon(U-Th)/He ages and evaluate the applicability of zircon(U-Th)/He dating, the diffusion characteristics, He diffusion kinetics, helium partial retention zone(HePRZ),...To gain a better quantitative understanding of zircon(U-Th)/He ages and evaluate the applicability of zircon(U-Th)/He dating, the diffusion characteristics, He diffusion kinetics, helium partial retention zone(HePRZ), closure temperature, and(U-Th)/He ages were investigated using high-precision laboratory step heating experiments based on the thermally activated diffusion process. The ln(D/a^2) in Fish Canyon Tuff(FCT) zircons determined from laboratory step heating experiments was negatively correlated with reciprocal temperature, as expected for thermally activated volume diffusion. The zircon activation energies ranged from 144 to 184 kJ mol^(-1) with a mean of 169±12 kJ mol^(-1). The closure temperatures ranged from 144 to 216°C(a cooling rate of 10°C Ma^(-1) and an effective grain radius of 38–60 μm) with an average of 176±18°C. The calculated closure temperature increased with increasing cooling rate, yielding an average zircon He closure temperature of ~136°C at a slow cooling rate of 0.1°C Ma^(-1), whereas the closure value was ~199°C at a cooling rate of 100°C Ma^(-1). The closure temperature increased with the equivalent spherical radius assuming a constant cooling rate. The He ages from FCT zircons were negligibly affected by grain size because of the rapid cooling. He preserved in the zircon was sensitive to temperature and holding time, and the temperature range for zircon HePRZ gradually decreased with increasing holding time. The(U-Th)/He ages from 26 FCT zircons yielded an algorithmic mean of 28.3±0.3 Ma(S.E.) and a geometric mean of 28.4±0.3 Ma(S.E.), consistent with the ages of 28.4±1.9 Ma reported by other laboratories. The FCT zircons were characterized by rapid cooling, young(U-Th)/He ages with good reproducibility, and low alpha doses. Weak correlations between the He ages and effective uranium(eU) concentrations from the FCT zircons indicated radiation damage did not significantly affect He diffusivity.展开更多
Yttria-stabilized zirconia (YSZ) is irradiated with 2.0-MeV Au2+ ions and 30-keV He+ ions. Three types of He, Au, Au + He (successively) ion irradiation are performed. The maximum damage level of a sequential d...Yttria-stabilized zirconia (YSZ) is irradiated with 2.0-MeV Au2+ ions and 30-keV He+ ions. Three types of He, Au, Au + He (successively) ion irradiation are performed. The maximum damage level of a sequential dual ion beam implanted sample is smaller than single Au ion implanted sample. A comparable volume swelling is found in a sequential dual ion beam irradiated sample and it is also found in a single Au ion implanted sample. Both effects can be explained by the partial reorganization of the dislocation network into weakly damaged regions in the dual ion beam implanted YSZ. A vacancy-assisted helium trapping/diffusion mechanism in the dual ion beam irradiated condition is discussed. No phase transformation or amorphization behavior happens in all types of ion irradiated YSZ.展开更多
Diffusion behavior of helium in molybdenum was investigated by means of the in- ternal friction method. An apparent relaxation internal friction peak associated with helium long-range diffusion was observed around 475...Diffusion behavior of helium in molybdenum was investigated by means of the in- ternal friction method. An apparent relaxation internal friction peak associated with helium long-range diffusion was observed around 475 K at a resonant frequency of 56 Hz. In terms of the Gorsky relaxation model and the shift of the peak position with the measurement frequency, the activation energy and pre-exponential factor of the diffusion coefficient of the helium atoms in molybdenum were deduced as 0.63 eV and 6.5 cm2/s, respectively.展开更多
It is generally believed a variation of 3He/4He isotopic ratios in the mantle is due to only the decay of U and Th,which produces4 He as well as heat.Here we show that not only3He/4He isotopic ratios but also helium c...It is generally believed a variation of 3He/4He isotopic ratios in the mantle is due to only the decay of U and Th,which produces4 He as well as heat.Here we show that not only3He/4He isotopic ratios but also helium contents can be fractionated by thermal diffusion in the lower mantle.The driving force for that fractionation is the adiabatic or convective temperature gradient,which always produces elemental and isotopic fractionation along temperature gradient by thermal diffusion with higher light/heavy isotopic ratio in the hot end.Our theoretical model and calculations indicate that the lower mantle is helium stratified,caused by thermal diffusion due to*400℃temperature contrast across the lower mantle.The highest3He/4He isotopic ratios and lowest He contents are in the lowermost mantle,which is a consequence of thermaldiffusion fractionation rather than the lower mantle is a primordial and undegassed reservoir.Therefore,oceanicisland basalts derived from the deepest lower mantle with high3He/4He isotopic ratios and less He contents—the long-standing helium paradox,is solved by our model.Because vigorous convection in the upper mantle had resulted in disordered or disorganized thermal-diffusion effects in He,Mid-ocean ridge basalts unaffected by mantle plume have a relatively homogenous and lower!3He/4He isotopic compositions.Our model also predicts that 3He/4He isotopic ratios in the deepest lower mantle of early Earth could be even higher than that of Jupiter,the initial He isotopic ratio in our solar system,because the temperature contrast across the lower mantle in the early Earth is the largest and less4 He had been produced by the decay of U and Th.Moreover,the early helium-stratified lower mantle owned the lowest He contents due to over-degassing caused by the largest temperature contrast.Consequently,succeeding evolution of the lower mantle is a He ingassed process due to secular cooling of the deepest mantle.This explains why significant amount of He produced by the decay of U and Th in the lower 展开更多
基金The authors are very grateful to Dr.Y.Dai of Spallation Materials Technology Spallation Neutron Source Division,Paul Scherrer Institute for his helpful comments and discussions.This work was supported by special Funds for Major State Basic Research Project of China(973)under Grant nos.2007CB925004 and 2008CB717802Knowledge Innovation Program of Chinese Academy of Sciences under Grant no.KJCX2-YW-N35+1 种基金National Science Foundation of China under Grant no.11005124China Postdoctoral Science Foundation funded project under Grant no.20100470863,and Director Grants of CASHIPS.Part of the calculations were performed in Center for Computational Science of CASHIPS.
文摘A cluster dynamics model based on rate theory has been developed to describe the accumulation and diffusion processes of helium in tungsten under helium implantation alone or synergistic irradiationwith neutron,by involving different types of objects,adopting up-to-date parameters and complex reaction processes as well as considering the diffusion process along with depth.The calculated results under different conditions are in good agreement with experiments much well.The model describes the behavior of helium in tungsten within 2D space of defect type/size and depth on different ions incident conditions(energies and fluences)and material conditions(system temperature and existent sinks),by including the synergistic effect of helium-neutron irradiations and the influence of inherent sinks(dislocation lines and grain boundaries).The model,coded as IRadMat,would be universally applicable to the evolution of defects for ions/neutron irradiated on plasma-facing materials.
基金supported by Science and Technology Development Fundation of Academy of Engineering Physics (Grant No2008A0301010)
文摘The tritium quantity stored in a steel pressure vessel decreases with time because of helium-3 decay and permeation of tritium into the steel wall of the pressure vessel.Meanwhile,the tritium quantity permeating into the steel wall also decreases with time due to helium-3 decay and diffusion in and out of the wall of tritium.Tritium and helium-3 in the steel wall will cause hydrogen and helium embrittlement of the wall material,respectively,and thereby change the carrying capacity of the vessel.Taking contemporarily both decay and permeation of tritium within the vessel and decay and diffusion of tritium having permeated into the wall into consideration,the governing equations of tritium and helium-3 contents in the wall were established and solved,and relevant formulas were deduced.Through analytical calculations,curves of tritium and helium-3 contents versus radius and time were theoretically plotted,the contents spatio-temporal distributions laws were obtained,and a law about helium-3 contents distribution in steel wall of a spherical pressure vessel was discovered which was called the law of double helium-3 content.
基金financially supported by National Natural Science Foundation of China(Grant Nos.41503058,41473053,41503057)Chinese Ministry of Land and Resources(Grant No.201511064-2)+2 种基金National Key R&D Program of China(Grant No.2017YFC0601300)China Geological Survey(Grant No.DD20160123-02)Basic Science and Technology Research Fundings of the Institute of Geology,CAGS(Grant No.J1625)
文摘To gain a better quantitative understanding of zircon(U-Th)/He ages and evaluate the applicability of zircon(U-Th)/He dating, the diffusion characteristics, He diffusion kinetics, helium partial retention zone(HePRZ), closure temperature, and(U-Th)/He ages were investigated using high-precision laboratory step heating experiments based on the thermally activated diffusion process. The ln(D/a^2) in Fish Canyon Tuff(FCT) zircons determined from laboratory step heating experiments was negatively correlated with reciprocal temperature, as expected for thermally activated volume diffusion. The zircon activation energies ranged from 144 to 184 kJ mol^(-1) with a mean of 169±12 kJ mol^(-1). The closure temperatures ranged from 144 to 216°C(a cooling rate of 10°C Ma^(-1) and an effective grain radius of 38–60 μm) with an average of 176±18°C. The calculated closure temperature increased with increasing cooling rate, yielding an average zircon He closure temperature of ~136°C at a slow cooling rate of 0.1°C Ma^(-1), whereas the closure value was ~199°C at a cooling rate of 100°C Ma^(-1). The closure temperature increased with the equivalent spherical radius assuming a constant cooling rate. The He ages from FCT zircons were negligibly affected by grain size because of the rapid cooling. He preserved in the zircon was sensitive to temperature and holding time, and the temperature range for zircon HePRZ gradually decreased with increasing holding time. The(U-Th)/He ages from 26 FCT zircons yielded an algorithmic mean of 28.3±0.3 Ma(S.E.) and a geometric mean of 28.4±0.3 Ma(S.E.), consistent with the ages of 28.4±1.9 Ma reported by other laboratories. The FCT zircons were characterized by rapid cooling, young(U-Th)/He ages with good reproducibility, and low alpha doses. Weak correlations between the He ages and effective uranium(eU) concentrations from the FCT zircons indicated radiation damage did not significantly affect He diffusivity.
基金National Natural Science Foundation of China(41174071,41573121)Seismic Fund of Institute of Earthquake Forecasting,China Earthquake Administration(CEA)(2016IES0101)
基金supported by the National Basic Research and Development Program of China(Grant Nos.2010CB832904 and 2010CB832902)the National Natural Science Foundation of China(Grant No.91226202)
文摘Yttria-stabilized zirconia (YSZ) is irradiated with 2.0-MeV Au2+ ions and 30-keV He+ ions. Three types of He, Au, Au + He (successively) ion irradiation are performed. The maximum damage level of a sequential dual ion beam implanted sample is smaller than single Au ion implanted sample. A comparable volume swelling is found in a sequential dual ion beam irradiated sample and it is also found in a single Au ion implanted sample. Both effects can be explained by the partial reorganization of the dislocation network into weakly damaged regions in the dual ion beam implanted YSZ. A vacancy-assisted helium trapping/diffusion mechanism in the dual ion beam irradiated condition is discussed. No phase transformation or amorphization behavior happens in all types of ion irradiated YSZ.
文摘Diffusion behavior of helium in molybdenum was investigated by means of the in- ternal friction method. An apparent relaxation internal friction peak associated with helium long-range diffusion was observed around 475 K at a resonant frequency of 56 Hz. In terms of the Gorsky relaxation model and the shift of the peak position with the measurement frequency, the activation energy and pre-exponential factor of the diffusion coefficient of the helium atoms in molybdenum were deduced as 0.63 eV and 6.5 cm2/s, respectively.
基金Funding for this study comes from the Strategic Priority Research Program (B) of CAS (XDB18010100)the Chinese NSF projects (41490635, 41530210, 41225012, 41573040)
文摘It is generally believed a variation of 3He/4He isotopic ratios in the mantle is due to only the decay of U and Th,which produces4 He as well as heat.Here we show that not only3He/4He isotopic ratios but also helium contents can be fractionated by thermal diffusion in the lower mantle.The driving force for that fractionation is the adiabatic or convective temperature gradient,which always produces elemental and isotopic fractionation along temperature gradient by thermal diffusion with higher light/heavy isotopic ratio in the hot end.Our theoretical model and calculations indicate that the lower mantle is helium stratified,caused by thermal diffusion due to*400℃temperature contrast across the lower mantle.The highest3He/4He isotopic ratios and lowest He contents are in the lowermost mantle,which is a consequence of thermaldiffusion fractionation rather than the lower mantle is a primordial and undegassed reservoir.Therefore,oceanicisland basalts derived from the deepest lower mantle with high3He/4He isotopic ratios and less He contents—the long-standing helium paradox,is solved by our model.Because vigorous convection in the upper mantle had resulted in disordered or disorganized thermal-diffusion effects in He,Mid-ocean ridge basalts unaffected by mantle plume have a relatively homogenous and lower!3He/4He isotopic compositions.Our model also predicts that 3He/4He isotopic ratios in the deepest lower mantle of early Earth could be even higher than that of Jupiter,the initial He isotopic ratio in our solar system,because the temperature contrast across the lower mantle in the early Earth is the largest and less4 He had been produced by the decay of U and Th.Moreover,the early helium-stratified lower mantle owned the lowest He contents due to over-degassing caused by the largest temperature contrast.Consequently,succeeding evolution of the lower mantle is a He ingassed process due to secular cooling of the deepest mantle.This explains why significant amount of He produced by the decay of U and Th in the lower