In this paper, we deal with the existence and multiplicity of positive solutions for the quasilinear elliptic problem -△pu-∑i=1^kμi|u|^p-2/|x-ai|p^u=|u|^p^*-2u+λ|u|^q-2u,x∈Ω,where Ω belong to R^N(N ...In this paper, we deal with the existence and multiplicity of positive solutions for the quasilinear elliptic problem -△pu-∑i=1^kμi|u|^p-2/|x-ai|p^u=|u|^p^*-2u+λ|u|^q-2u,x∈Ω,where Ω belong to R^N(N ≥ 3) is a smooth bounded domain such that the different points ai∈Ω,i= 1,2,...,k,0≤μi〈μ^-=(N-p/p)^p,λ〉0,1≤q〈p,and p^*=p^N/N-p.The results depend crucially cn the parameters λ,q and μi for i=1,2,...,k.展开更多
In this paper, we investigate the solvability of a class of semilinear elliptic equations which are perturbation of the problems involving critical Hardy-Sobolev exponent and Hardy singular terms. The existence of at ...In this paper, we investigate the solvability of a class of semilinear elliptic equations which are perturbation of the problems involving critical Hardy-Sobolev exponent and Hardy singular terms. The existence of at least a positive radial solution is established for a class of semilinear elliptic problems involving critical Hardy-Sobolev exponent and Hardy terms. The main tools are variational method, critical point theory and some analysis techniques.展开更多
文摘In this paper, we deal with the existence and multiplicity of positive solutions for the quasilinear elliptic problem -△pu-∑i=1^kμi|u|^p-2/|x-ai|p^u=|u|^p^*-2u+λ|u|^q-2u,x∈Ω,where Ω belong to R^N(N ≥ 3) is a smooth bounded domain such that the different points ai∈Ω,i= 1,2,...,k,0≤μi〈μ^-=(N-p/p)^p,λ〉0,1≤q〈p,and p^*=p^N/N-p.The results depend crucially cn the parameters λ,q and μi for i=1,2,...,k.
文摘In this paper, we investigate the solvability of a class of semilinear elliptic equations which are perturbation of the problems involving critical Hardy-Sobolev exponent and Hardy singular terms. The existence of at least a positive radial solution is established for a class of semilinear elliptic problems involving critical Hardy-Sobolev exponent and Hardy terms. The main tools are variational method, critical point theory and some analysis techniques.