期刊文献+

带有Hardy位势的分数阶偏微分方程与积分方程的等价性

Equivalence Between a Fractional Partial Differential Equation with Hardy Term and an Integral
下载PDF
导出
摘要 在全空间Rn中考虑带有Hardy位势的分数阶偏微分方程(P):(-Δ)α2u(x)=1xγup(x) We consider the equivalence between the fractional partial differential equation (P) with Hardy term in Rn : (- Δ) α2 u(x) = 1xγup (x) x ∈ Rn ,and the correspondingintegral equation u(x)=U(x) ≥ 0 x ∈ Rn c∫up (y)| x - y | n-α | y |γdy ,where 0 〈 γ〈 α〈 2 #n and c is a constant .A new and direct approach is Rn employed to prove the equivalence . Once the equivalence is established ,all results of the positive solutions to an integral equation can be applied to the fractional partical difference equation (PDE) .
作者 李冬艳
出处 《西安工业大学学报》 CAS 2014年第7期523-525,共3页 Journal of Xi’an Technological University
基金 国家自然科学基金资助项目(11271299) 陕西省自然科学基础研究计划项目面上项目(2012JM1014)
关键词 分数阶拉普拉斯 等价性 HARDY位势 强解 fractional laplacian equivalence hardy term strong solution
  • 相关文献

参考文献10

  • 1BOUCHARD J P, GEORGES A. Anomalous Diffu- sion in Disordered Media, Statistical Mechanics [J]. Models and Physical Applications, Physics Reports, 1990,195 (4/5) : 127. 被引量:1
  • 2CAFFARELLI L, VASSEUR L. Drift Diffusion E-quations with FractionaJ Diffusion and the Quasi-geo- strophic Equation [ J ]. Ann Math, 2010, 171 (3) : 1903. 被引量:1
  • 3TARASOV V, ZASLASVKY G. Fractional Dynamics of Systems with Lon-Range Interaction[J]. Comm Nonl Sci Numer,2006,11(8):885. 被引量:1
  • 4CONT R, TANKOV P. Financial Modelling with Jump Processes, Chapman b- Hall/ CRC Financial Mathematics Series, Boca Ration [M] 2nd ed. Boca Ratin:Chapman & Hally CRC, 2008. 被引量:1
  • 5CAFFARELLI L, SILVESTRE L. An Extension Prob- lem Related to the Fractional Laplacian[J]. Comm Par Diff Eqn,2007,32(2) :1245. 被引量:1
  • 6LID Y, NIU P C, ZHUO R. Nonexistence of Positive Solution for an Integral Equation Related to the Hardy- Sobolev Inequality. Acta Appl. Math[J/OL]. Spring- er, (2014-03-01) [2014-03-10]. http : //link. springer. corn/article/10. 1007 % 2Fs10440-014-9878-z. 被引量:1
  • 7CHEN W X, LI C M. An Integral System and the Lane- Emden Conjecture [J]. Discrete Contin Dyn Syst,2009,24(4) : 1167. 被引量:1
  • 8SILVESTRE L. Regularity of the Obstacle Problem for a Fractional Power of the Laplacian: Regularity up to the Boundary[J]. Comm Pure Appl Math, 2007,60(4) :67. 被引量:1
  • 9ZHUO R, CHEN W X, CUI X W, et al. A Liouville Theorem for the Fracitonal Laplacian[J/OL]. Elsevi- er, (2013-09-29)[2014-03-10]. http://arxiv, org/ abs/1401. 7402. 被引量:1
  • 10KULCZYCKI T. Properties of Greenfunction of Symmet- ric Stable Proeesses[J]. Probability and Mathematical Statistics, 1997,17 (2) : 339. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部