摘要
在全空间Rn中考虑带有Hardy位势的分数阶偏微分方程(P):(-Δ)α2u(x)=1xγup(x)
We consider the equivalence between the fractional partial differential equation (P) with Hardy term in Rn : (- Δ) α2 u(x) = 1xγup (x) x ∈ Rn ,and the correspondingintegral equation u(x)=U(x) ≥ 0 x ∈ Rn c∫up (y)| x - y | n-α | y |γdy ,where 0 〈 γ〈 α〈 2 #n and c is a constant .A new and direct approach is Rn employed to prove the equivalence . Once the equivalence is established ,all results of the positive solutions to an integral equation can be applied to the fractional partical difference equation (PDE) .
出处
《西安工业大学学报》
CAS
2014年第7期523-525,共3页
Journal of Xi’an Technological University
基金
国家自然科学基金资助项目(11271299)
陕西省自然科学基础研究计划项目面上项目(2012JM1014)