The fast sweeping method is an efficient iterative method for hyperbolic problems. It combines Gauss-Seidel iterations with alternating sweeping orderings. In this paper several parallel implementations of the fast sw...The fast sweeping method is an efficient iterative method for hyperbolic problems. It combines Gauss-Seidel iterations with alternating sweeping orderings. In this paper several parallel implementations of the fast sweeping method are presented. These parallel algorithms are simple and efficient due to the causality of the underlying partial different equations. Numerical examples are used to verify our algorithms.展开更多
The Hamilton-Jacobi method for solving ordinary differential equations is presented in this paper. A system of ordinary differential equations of first order or second order can be expressed as a Hamilton system under...The Hamilton-Jacobi method for solving ordinary differential equations is presented in this paper. A system of ordinary differential equations of first order or second order can be expressed as a Hamilton system under certain conditions. Then the Hamilton-Jacobi method is used in the integration of the Hamilton system and the solution of the original ordinary differential equations can be found. Finally, an example is given to illustrate the application of the result.展开更多
What does it mean to study PDE (Partial Differential Equation)? How and what to do “to claim proudly that I’m studying a certain PDE”? Newton mechanic uses mainly ODE (Ordinary Differential Equation) and describes ...What does it mean to study PDE (Partial Differential Equation)? How and what to do “to claim proudly that I’m studying a certain PDE”? Newton mechanic uses mainly ODE (Ordinary Differential Equation) and describes nicely movements of Sun, Moon and Earth etc. Now, so-called quantum phenomenum is described by, say Schrödinger equation, PDE which explains both wave and particle characters after quantization of ODE. The coupled Maxwell-Dirac equation is also “quantized” and QED (Quantum Electro-Dynamics) theory is invented by physicists. Though it is said this QED gives very good coincidence between theoretical1 and experimental observed quantities, but what is the equation corresponding to QED? Or, is it possible to describe QED by “equation” in naive sense?展开更多
Computing tasks may often be posed as optimization problems.The objective functions for real-world scenarios are often nonconvex and/or nondifferentiable.State-of-the-art methods for solving these problems typically o...Computing tasks may often be posed as optimization problems.The objective functions for real-world scenarios are often nonconvex and/or nondifferentiable.State-of-the-art methods for solving these problems typically only guarantee convergence to local minima.This work presents Hamilton-Jacobi-based Moreau adaptive descent(HJ-MAD),a zero-order algorithm with guaranteed convergence to global minima,assuming continuity of the objective function.The core idea is to compute gradients of the Moreau envelope of the objective(which is"piece-wise convex")with adaptive smoothing parameters.Gradients of the Moreau envelope(i.e.,proximal operators)are approximated via the Hopf-Lax formula for the viscous Hamilton-Jacobi equation.Our numerical examples illustrate global convergence.展开更多
Two of the main challenges in optimal control are solving problems with state-dependent running costs and developing efficient numerical solvers that are computationally tractable in high dimensions.In this paper,we p...Two of the main challenges in optimal control are solving problems with state-dependent running costs and developing efficient numerical solvers that are computationally tractable in high dimensions.In this paper,we provide analytical solutions to certain optimal control problems whose running cost depends on the state variable and with constraints on the control.We also provide Lax-Oleinik-type representation formulas for the corresponding Hamilton-Jacobi partial differential equations with state-dependent Hamiltonians.Additionally,we present an efficient,grid-free numerical solver based on our representation formulas,which is shown to scale linearly with the state dimension,and thus,to overcome the curse of dimensionality.Using existing optimization methods and the min-plus technique,we extend our numerical solvers to address more general classes of convex and nonconvex initial costs.We demonstrate the capabilities of our numerical solvers using implementations on a central processing unit(CPU)and a field-programmable gate array(FPGA).In several cases,our FPGA implementation obtains over a 10 times speedup compared to the CPU,which demonstrates the promising performance boosts FPGAs can achieve.Our numerical results show that our solvers have the potential to serve as a building block for solving broader classes of high-dimensional optimal control problems in real-time.展开更多
In this paper, aiming to provide accurate protocols for management of sustainable ecosystems, a design methodology of H<sub>∞</sub>-controller for hunter-prey model under exposure to exogenous di...In this paper, aiming to provide accurate protocols for management of sustainable ecosystems, a design methodology of H<sub>∞</sub>-controller for hunter-prey model under exposure to exogenous disturbance and stochastic noise is presented. Along the development, solution procedure of the stochastic Hamilton-Jacobi-Isaacs equation via Successive Galerkin’s Approximation is described. Utilizing the proposed solution methodology of Hamilton-Jacobi-Isaacs equation, H<sub>∞</sub>-controller of hunter-prey model was successfully designed. Robustness and performance against exogenous disturbance of the designed H<sub>∞</sub>-controller is validated and confirmed by numerical simulations including Monte-Carlo simulation by Simulink software on MATLAB.展开更多
In this paper,we give the geometric constraint conditions of a canonical symplectic form and regular reduced symplectic forms for the dynamical vector fields of a regular controlled Hamiltonian(RCH)system and its regu...In this paper,we give the geometric constraint conditions of a canonical symplectic form and regular reduced symplectic forms for the dynamical vector fields of a regular controlled Hamiltonian(RCH)system and its regular reduced systems,which are called the Type I and Type II Hamilton-Jacobi equations.First,we prove two types of Hamilton-Jacobi theorems for an RCH system on the cotangent bundle of a configuration manifold by using the canonical symplectic form and its dynamical vector field.Second,we generalize the above results for a regular reducible RCH system with symmetry and a momentum map,and derive precisely two types of Hamilton-Jacobi equations for the regular point reduced RCH system and the regular orbit reduced RCH system.Third,we prove that the RCH-equivalence for the RCH system,and the RpCH-equivalence and RoCH-equivalence for the regular reducible RCH systems with symmetries,leave the solutions of corresponding Hamilton-Jacobi equations invariant.Finally,as an application of the theoretical results,we show the Type I and Type II Hamilton-Jacobi equations for the Rp-reduced controlled rigid body-rotor system and the Rp-reduced controlled heavy top-rotor system on the generalizations of the rotation group SO(3)and the Euclidean group SE(3),respectively.This work reveals the deeply internal relationships of the geometrical structures of phase spaces,the dynamical vector fields and the controls of the RCH system.展开更多
We investigate an optimal portfolio and consumption choice problem with a defaultable security. Under the goal of maximizing the expected discounted utility of the average past consumption, a dynamic programming princ...We investigate an optimal portfolio and consumption choice problem with a defaultable security. Under the goal of maximizing the expected discounted utility of the average past consumption, a dynamic programming principle is applied to derive a pair of second-order parabolic Hamilton-Jacobi- Bellman (HJB) equations with gradient constraints. We explore these HJB equations by a viscosity solution approach and characterize the post-default and pre-default value functions as a unique pair of constrained viscosity solutions to the HJB equations.展开更多
In this paper, we use Hermite weighted essentially non-oscillatory (HWENO) schemes with a Lax-Wendroff time discretization procedure, termed HWENO-LW schemes, to solve Hamilton-Jacobi equations. The idea of the reco...In this paper, we use Hermite weighted essentially non-oscillatory (HWENO) schemes with a Lax-Wendroff time discretization procedure, termed HWENO-LW schemes, to solve Hamilton-Jacobi equations. The idea of the reconstruction in the HWENO schemes comes from the original WENO schemes, however both the function and its first derivative values are evolved in time and are used in the reconstruction. One major advantage of HWENO schemes is its compactness in the reconstruction. We explore the possibility in avoiding the nonlinear weights for part of the procedure, hence reducing the cost but still maintaining non-oscillatory properties for problems with strong discontinuous derivative. As a result, comparing with HWENO with Runge-Kutta time discretizations schemes (HWENO-RK) of Qiu and Shu [19] for Hamilton-Jacobi equations, the major advantages of HWENO-LW schemes are their saving of computational cost and their compactness in the reconstruction. Extensive numerical experiments are performed to illustrate the capability of the method.展开更多
In this paper,we propose a novel Hermite weighted essentially non-oscillatory(HWENO)fast sweeping method to solve the static Hamilton-Jacobi equations efficiently.During the HWENO reconstruction procedure,the proposed...In this paper,we propose a novel Hermite weighted essentially non-oscillatory(HWENO)fast sweeping method to solve the static Hamilton-Jacobi equations efficiently.During the HWENO reconstruction procedure,the proposed method is built upon a new finite difference fifth order HWENO scheme involving one big stencil and two small stencils.However,one major novelty and difference from the traditional HWENO framework lies in the fact that,we do not need to introduce and solve any additional equations to update the derivatives of the unknown functionϕ.Instead,we use the currentϕand the old spatial derivative ofϕto update them.The traditional HWENO fast sweeping method is also introduced in this paper for comparison,where additional equations governing the spatial derivatives ofϕare introduced.The novel HWENO fast sweeping methods are shown to yield great savings in computational time,which improves the computational efficiency of the traditional HWENO scheme.In addition,a hybrid strategy is also introduced to further reduce computational costs.Extensive numerical experiments are provided to validate the accuracy and efficiency of the proposed approaches.展开更多
.As an application of the theoretical results,in this paper,we study the symmetric reduction and Hamilton-Jacobi theory for the underwater ve-hicle with two internal rotors as a regular point reducible RCH system,in t....As an application of the theoretical results,in this paper,we study the symmetric reduction and Hamilton-Jacobi theory for the underwater ve-hicle with two internal rotors as a regular point reducible RCH system,in the cases of coincident and non-coincident centers of the buoyancy and the gravity.At first,we give the regular point reduction and the two types of Hamilton-Jacobi equations for a regular controlled Hamiltonian(RCH)system with sym-metry and a momentum map on the generalization of a semidirect product Lie group.Next,we derive precisely the geometric constraint conditions of the reduced symplectic forms for the dynamical vector fields of the regular point reducible controlled underwater vehicle-rotor system,that is,the two types of Hamilton-Jacobi equations for the reduced controlled underwater vehicle-rotor system,by calculations in detail.These work reveal the deeply internal relationships of the geometrical structures of the phase spaces,the dynamical vector fields and the controls of the system.展开更多
Hamilton-Jacobi equation appears frequently in applications, e.g., in differential games and control theory, and is closely related to hyperbolic conservation laws[3, 4, 12]. This is helpful in the design of differenc...Hamilton-Jacobi equation appears frequently in applications, e.g., in differential games and control theory, and is closely related to hyperbolic conservation laws[3, 4, 12]. This is helpful in the design of difference approximations for Hamilton-Jacobi equation and hyperbolic conservation laws. In this paper we present the relaxing system for HamiltonJacobi equations in arbitrary space dimensions, and high resolution relaxing schemes for Hamilton-Jacobi equation, based on using the local relaxation approximation. The schemes are numerically tested on a variety of 1D and 2D problems, including a problem related to optimal control problem. High-order accuracy in smooth regions, good resolution of discontinuities, and convergence to viscosity solutions are observed.展开更多
This paper presents a solution methodology for H<sub>∞</sub>-feedback control design problem of Heparin controlled blood clotting network under the presence of stochastic noise. The formulaic solution pro...This paper presents a solution methodology for H<sub>∞</sub>-feedback control design problem of Heparin controlled blood clotting network under the presence of stochastic noise. The formulaic solution procedure to solve nonlinear partial differential equation, the Hamilton-Jacobi-Isaacs equation with Successive Galrkin’s Approximation is sketched and validity is proved. According to Lyapunov’s theory, with solutions of the nonlinear PDEs, robust feedback control is designed. To confirm the performance and robustness of the designed controller, numerical and Monte-Carlo simulation results by Simulink software on MATLAB are provided.展开更多
We present path integral quantization of a massive superparticle in d =4 which preserves 1/4 of the target space supersymmetry with eight supercharges, and so corresponds to the partial breaking N = 8 to N = 2. Its wo...We present path integral quantization of a massive superparticle in d =4 which preserves 1/4 of the target space supersymmetry with eight supercharges, and so corresponds to the partial breaking N = 8 to N = 2. Its worldline action contains a Wess-Zumino term, explicitly breaks d =4 Lorentz symmetry and exhibits one complex fermionic k-symmetry. We perform the Hamilton-Jacobi formalism of constrained systems, to obtain the equations of motion of the model as total differential equations in many variables. These equations of motion are in exact agreement with those obtained by Dirac’s method.展开更多
The Hamilton-Jacobi formalism is used to discuss the path integral quantization of the double supersymmetric models with the spinning superparticle in the component and superfield form. The equations of motion are obt...The Hamilton-Jacobi formalism is used to discuss the path integral quantization of the double supersymmetric models with the spinning superparticle in the component and superfield form. The equations of motion are obtained as total differential equations in many variables. The equations of motion are integrable, and the path integral is obtained as an integration over the canonical phase space coordinates.展开更多
We investigate Hawking radiation from a five-dimensional Lovelock black hole using the Hamilton- Jacobi method. The behavior of the rate of radiation is plotted for various values of tile ultraviolet correction parame...We investigate Hawking radiation from a five-dimensional Lovelock black hole using the Hamilton- Jacobi method. The behavior of the rate of radiation is plotted for various values of tile ultraviolet correction parameter and the cosmological constant. The results show that, owing to the ultraviolet correction and the presence of dark energy represented by the cosmological constant, the black hole radiates at a slower rate in comparison to the case without ultraviolet correction or cosmological constant. Moreover, the presence of the cosmological constant makes the effect of the ultraviolet correction on the black hole radiation negligible.展开更多
This paper presents a design method of H<sub>2</sub> and H<sub>∞</sub>-feedback control loop for nonlinear smooth gene networks that are in control affine form. Formulaic solution methodology ...This paper presents a design method of H<sub>2</sub> and H<sub>∞</sub>-feedback control loop for nonlinear smooth gene networks that are in control affine form. Formulaic solution methodology for solving the nonlinear partial differential equations, namely the Hamilton-Jacobi-Bellman and Hamilton-Jacobi-Isaacs equations through successive Galerkin’s approximation is implemented and the results are compared. Throughout the implementation, there were several caveats that need to be further resolved for practical applications in general cases. Such issues and the clarification of causes are mathematically established and reviewed.展开更多
基金This work is partially supported by Sloan FoundationNSF DMS0513073+1 种基金ONR grant N00014-02-1-0090DARPA grant N00014-02-1-0603
文摘The fast sweeping method is an efficient iterative method for hyperbolic problems. It combines Gauss-Seidel iterations with alternating sweeping orderings. In this paper several parallel implementations of the fast sweeping method are presented. These parallel algorithms are simple and efficient due to the causality of the underlying partial different equations. Numerical examples are used to verify our algorithms.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10272021, 10572021) and the Doctoral Program Foundation of Institution of Higher Education of China (Grant No 20040007022).
文摘The Hamilton-Jacobi method for solving ordinary differential equations is presented in this paper. A system of ordinary differential equations of first order or second order can be expressed as a Hamilton system under certain conditions. Then the Hamilton-Jacobi method is used in the integration of the Hamilton system and the solution of the original ordinary differential equations can be found. Finally, an example is given to illustrate the application of the result.
文摘What does it mean to study PDE (Partial Differential Equation)? How and what to do “to claim proudly that I’m studying a certain PDE”? Newton mechanic uses mainly ODE (Ordinary Differential Equation) and describes nicely movements of Sun, Moon and Earth etc. Now, so-called quantum phenomenum is described by, say Schrödinger equation, PDE which explains both wave and particle characters after quantization of ODE. The coupled Maxwell-Dirac equation is also “quantized” and QED (Quantum Electro-Dynamics) theory is invented by physicists. Though it is said this QED gives very good coincidence between theoretical1 and experimental observed quantities, but what is the equation corresponding to QED? Or, is it possible to describe QED by “equation” in naive sense?
基金partially funded by AFOSR MURI FA9550-18-502,ONR N00014-18-1-2527,N00014-18-20-1-2093,N00014-20-1-2787supported by the NSF Graduate Research Fellowship under Grant No.DGE-1650604.
文摘Computing tasks may often be posed as optimization problems.The objective functions for real-world scenarios are often nonconvex and/or nondifferentiable.State-of-the-art methods for solving these problems typically only guarantee convergence to local minima.This work presents Hamilton-Jacobi-based Moreau adaptive descent(HJ-MAD),a zero-order algorithm with guaranteed convergence to global minima,assuming continuity of the objective function.The core idea is to compute gradients of the Moreau envelope of the objective(which is"piece-wise convex")with adaptive smoothing parameters.Gradients of the Moreau envelope(i.e.,proximal operators)are approximated via the Hopf-Lax formula for the viscous Hamilton-Jacobi equation.Our numerical examples illustrate global convergence.
基金supported by the DOE-MMICS SEA-CROGS DE-SC0023191 and the AFOSR MURI FA9550-20-1-0358supported by the SMART Scholarship,which is funded by the USD/R&E(The Under Secretary of Defense-Research and Engineering),National Defense Education Program(NDEP)/BA-1,Basic Research.
文摘Two of the main challenges in optimal control are solving problems with state-dependent running costs and developing efficient numerical solvers that are computationally tractable in high dimensions.In this paper,we provide analytical solutions to certain optimal control problems whose running cost depends on the state variable and with constraints on the control.We also provide Lax-Oleinik-type representation formulas for the corresponding Hamilton-Jacobi partial differential equations with state-dependent Hamiltonians.Additionally,we present an efficient,grid-free numerical solver based on our representation formulas,which is shown to scale linearly with the state dimension,and thus,to overcome the curse of dimensionality.Using existing optimization methods and the min-plus technique,we extend our numerical solvers to address more general classes of convex and nonconvex initial costs.We demonstrate the capabilities of our numerical solvers using implementations on a central processing unit(CPU)and a field-programmable gate array(FPGA).In several cases,our FPGA implementation obtains over a 10 times speedup compared to the CPU,which demonstrates the promising performance boosts FPGAs can achieve.Our numerical results show that our solvers have the potential to serve as a building block for solving broader classes of high-dimensional optimal control problems in real-time.
文摘In this paper, aiming to provide accurate protocols for management of sustainable ecosystems, a design methodology of H<sub>∞</sub>-controller for hunter-prey model under exposure to exogenous disturbance and stochastic noise is presented. Along the development, solution procedure of the stochastic Hamilton-Jacobi-Isaacs equation via Successive Galerkin’s Approximation is described. Utilizing the proposed solution methodology of Hamilton-Jacobi-Isaacs equation, H<sub>∞</sub>-controller of hunter-prey model was successfully designed. Robustness and performance against exogenous disturbance of the designed H<sub>∞</sub>-controller is validated and confirmed by numerical simulations including Monte-Carlo simulation by Simulink software on MATLAB.
基金partially supported by the Nankai University 985 Projectthe Key Laboratory of Pure Mathematics and Combinatorics,Ministry of Education,Chinathe NSFC(11531011)。
文摘In this paper,we give the geometric constraint conditions of a canonical symplectic form and regular reduced symplectic forms for the dynamical vector fields of a regular controlled Hamiltonian(RCH)system and its regular reduced systems,which are called the Type I and Type II Hamilton-Jacobi equations.First,we prove two types of Hamilton-Jacobi theorems for an RCH system on the cotangent bundle of a configuration manifold by using the canonical symplectic form and its dynamical vector field.Second,we generalize the above results for a regular reducible RCH system with symmetry and a momentum map,and derive precisely two types of Hamilton-Jacobi equations for the regular point reduced RCH system and the regular orbit reduced RCH system.Third,we prove that the RCH-equivalence for the RCH system,and the RpCH-equivalence and RoCH-equivalence for the regular reducible RCH systems with symmetries,leave the solutions of corresponding Hamilton-Jacobi equations invariant.Finally,as an application of the theoretical results,we show the Type I and Type II Hamilton-Jacobi equations for the Rp-reduced controlled rigid body-rotor system and the Rp-reduced controlled heavy top-rotor system on the generalizations of the rotation group SO(3)and the Euclidean group SE(3),respectively.This work reveals the deeply internal relationships of the geometrical structures of phase spaces,the dynamical vector fields and the controls of the RCH system.
文摘We investigate an optimal portfolio and consumption choice problem with a defaultable security. Under the goal of maximizing the expected discounted utility of the average past consumption, a dynamic programming principle is applied to derive a pair of second-order parabolic Hamilton-Jacobi- Bellman (HJB) equations with gradient constraints. We explore these HJB equations by a viscosity solution approach and characterize the post-default and pre-default value functions as a unique pair of constrained viscosity solutions to the HJB equations.
基金Research partially supported by NNSFC grant 10371118,SRF for ROCS,SEM and Nanjing University Talent Development Foundation.
文摘In this paper, we use Hermite weighted essentially non-oscillatory (HWENO) schemes with a Lax-Wendroff time discretization procedure, termed HWENO-LW schemes, to solve Hamilton-Jacobi equations. The idea of the reconstruction in the HWENO schemes comes from the original WENO schemes, however both the function and its first derivative values are evolved in time and are used in the reconstruction. One major advantage of HWENO schemes is its compactness in the reconstruction. We explore the possibility in avoiding the nonlinear weights for part of the procedure, hence reducing the cost but still maintaining non-oscillatory properties for problems with strong discontinuous derivative. As a result, comparing with HWENO with Runge-Kutta time discretizations schemes (HWENO-RK) of Qiu and Shu [19] for Hamilton-Jacobi equations, the major advantages of HWENO-LW schemes are their saving of computational cost and their compactness in the reconstruction. Extensive numerical experiments are performed to illustrate the capability of the method.
基金supported by the NSF (Grant No.DMS-1753581)supported by NSFC (Grant No.12071392).
文摘In this paper,we propose a novel Hermite weighted essentially non-oscillatory(HWENO)fast sweeping method to solve the static Hamilton-Jacobi equations efficiently.During the HWENO reconstruction procedure,the proposed method is built upon a new finite difference fifth order HWENO scheme involving one big stencil and two small stencils.However,one major novelty and difference from the traditional HWENO framework lies in the fact that,we do not need to introduce and solve any additional equations to update the derivatives of the unknown functionϕ.Instead,we use the currentϕand the old spatial derivative ofϕto update them.The traditional HWENO fast sweeping method is also introduced in this paper for comparison,where additional equations governing the spatial derivatives ofϕare introduced.The novel HWENO fast sweeping methods are shown to yield great savings in computational time,which improves the computational efficiency of the traditional HWENO scheme.In addition,a hybrid strategy is also introduced to further reduce computational costs.Extensive numerical experiments are provided to validate the accuracy and efficiency of the proposed approaches.
文摘.As an application of the theoretical results,in this paper,we study the symmetric reduction and Hamilton-Jacobi theory for the underwater ve-hicle with two internal rotors as a regular point reducible RCH system,in the cases of coincident and non-coincident centers of the buoyancy and the gravity.At first,we give the regular point reduction and the two types of Hamilton-Jacobi equations for a regular controlled Hamiltonian(RCH)system with sym-metry and a momentum map on the generalization of a semidirect product Lie group.Next,we derive precisely the geometric constraint conditions of the reduced symplectic forms for the dynamical vector fields of the regular point reducible controlled underwater vehicle-rotor system,that is,the two types of Hamilton-Jacobi equations for the reduced controlled underwater vehicle-rotor system,by calculations in detail.These work reveal the deeply internal relationships of the geometrical structures of the phase spaces,the dynamical vector fields and the controls of the system.
基金the National Natural Science Foundation of China (Grant No. 19901031)and the foundation of National Laboratory of Computationa
文摘Hamilton-Jacobi equation appears frequently in applications, e.g., in differential games and control theory, and is closely related to hyperbolic conservation laws[3, 4, 12]. This is helpful in the design of difference approximations for Hamilton-Jacobi equation and hyperbolic conservation laws. In this paper we present the relaxing system for HamiltonJacobi equations in arbitrary space dimensions, and high resolution relaxing schemes for Hamilton-Jacobi equation, based on using the local relaxation approximation. The schemes are numerically tested on a variety of 1D and 2D problems, including a problem related to optimal control problem. High-order accuracy in smooth regions, good resolution of discontinuities, and convergence to viscosity solutions are observed.
文摘This paper presents a solution methodology for H<sub>∞</sub>-feedback control design problem of Heparin controlled blood clotting network under the presence of stochastic noise. The formulaic solution procedure to solve nonlinear partial differential equation, the Hamilton-Jacobi-Isaacs equation with Successive Galrkin’s Approximation is sketched and validity is proved. According to Lyapunov’s theory, with solutions of the nonlinear PDEs, robust feedback control is designed. To confirm the performance and robustness of the designed controller, numerical and Monte-Carlo simulation results by Simulink software on MATLAB are provided.
文摘We present path integral quantization of a massive superparticle in d =4 which preserves 1/4 of the target space supersymmetry with eight supercharges, and so corresponds to the partial breaking N = 8 to N = 2. Its worldline action contains a Wess-Zumino term, explicitly breaks d =4 Lorentz symmetry and exhibits one complex fermionic k-symmetry. We perform the Hamilton-Jacobi formalism of constrained systems, to obtain the equations of motion of the model as total differential equations in many variables. These equations of motion are in exact agreement with those obtained by Dirac’s method.
文摘The Hamilton-Jacobi formalism is used to discuss the path integral quantization of the double supersymmetric models with the spinning superparticle in the component and superfield form. The equations of motion are obtained as total differential equations in many variables. The equations of motion are integrable, and the path integral is obtained as an integration over the canonical phase space coordinates.
文摘We investigate Hawking radiation from a five-dimensional Lovelock black hole using the Hamilton- Jacobi method. The behavior of the rate of radiation is plotted for various values of tile ultraviolet correction parameter and the cosmological constant. The results show that, owing to the ultraviolet correction and the presence of dark energy represented by the cosmological constant, the black hole radiates at a slower rate in comparison to the case without ultraviolet correction or cosmological constant. Moreover, the presence of the cosmological constant makes the effect of the ultraviolet correction on the black hole radiation negligible.
文摘This paper presents a design method of H<sub>2</sub> and H<sub>∞</sub>-feedback control loop for nonlinear smooth gene networks that are in control affine form. Formulaic solution methodology for solving the nonlinear partial differential equations, namely the Hamilton-Jacobi-Bellman and Hamilton-Jacobi-Isaacs equations through successive Galerkin’s approximation is implemented and the results are compared. Throughout the implementation, there were several caveats that need to be further resolved for practical applications in general cases. Such issues and the clarification of causes are mathematically established and reviewed.