摘要
In this paper, aiming to provide accurate protocols for management of sustainable ecosystems, a design methodology of H<sub>∞</sub>-controller for hunter-prey model under exposure to exogenous disturbance and stochastic noise is presented. Along the development, solution procedure of the stochastic Hamilton-Jacobi-Isaacs equation via Successive Galerkin’s Approximation is described. Utilizing the proposed solution methodology of Hamilton-Jacobi-Isaacs equation, H<sub>∞</sub>-controller of hunter-prey model was successfully designed. Robustness and performance against exogenous disturbance of the designed H<sub>∞</sub>-controller is validated and confirmed by numerical simulations including Monte-Carlo simulation by Simulink software on MATLAB.
In this paper, aiming to provide accurate protocols for management of sustainable ecosystems, a design methodology of H<sub>∞</sub>-controller for hunter-prey model under exposure to exogenous disturbance and stochastic noise is presented. Along the development, solution procedure of the stochastic Hamilton-Jacobi-Isaacs equation via Successive Galerkin’s Approximation is described. Utilizing the proposed solution methodology of Hamilton-Jacobi-Isaacs equation, H<sub>∞</sub>-controller of hunter-prey model was successfully designed. Robustness and performance against exogenous disturbance of the designed H<sub>∞</sub>-controller is validated and confirmed by numerical simulations including Monte-Carlo simulation by Simulink software on MATLAB.
作者
Michael Park
Michael Park(Hong Kong International School, Hong Kong, China)