In the framework of stochastic processes, the connection between the dynamic programming scheme given by the Hamilton-Jacobi-Bellman equation and a recently proposed control approach based on the Fokker-Planck equatio...In the framework of stochastic processes, the connection between the dynamic programming scheme given by the Hamilton-Jacobi-Bellman equation and a recently proposed control approach based on the Fokker-Planck equation is discussed. Under appropriate assumptions it is shown that the two strategies are equivalent in the case of expected cost functionals, while the Fokker-Planck formalism allows considering a larger classof objectives. To illustratethe connection between the two control strategies, the cases of an Itō stochastic process and of a piecewise-deterministic process are considered.展开更多
This paper presents a modified domain decomposition method for the numerical solution of discrete Hamilton-Jacobi-Bellman equations arising from a class of optimal control problems using diffusion models. A convergenc...This paper presents a modified domain decomposition method for the numerical solution of discrete Hamilton-Jacobi-Bellman equations arising from a class of optimal control problems using diffusion models. A convergence theorem is established. Numerical results indicate the effectiveness and accuracy of the method.展开更多
基金the support by the European Science Foundation Exchange OPTPDE Grantthe support of CADMOS(Center for Advances Modeling and Science)Supported in part by the European Union under Grant Agreement“Multi-ITN STRIKE-Novel Methods in Computational Finance”.Fund Project No.304617 Marie Curie Research Training Network.
文摘In the framework of stochastic processes, the connection between the dynamic programming scheme given by the Hamilton-Jacobi-Bellman equation and a recently proposed control approach based on the Fokker-Planck equation is discussed. Under appropriate assumptions it is shown that the two strategies are equivalent in the case of expected cost functionals, while the Fokker-Planck formalism allows considering a larger classof objectives. To illustratethe connection between the two control strategies, the cases of an Itō stochastic process and of a piecewise-deterministic process are considered.
文摘This paper presents a modified domain decomposition method for the numerical solution of discrete Hamilton-Jacobi-Bellman equations arising from a class of optimal control problems using diffusion models. A convergence theorem is established. Numerical results indicate the effectiveness and accuracy of the method.