We investigate the emerging consequences of an applied strong in-plane electric field on a macroscopically large graphene sheet subjected to a perpendicular magnetic field, by determining in exact analytical form vari...We investigate the emerging consequences of an applied strong in-plane electric field on a macroscopically large graphene sheet subjected to a perpendicular magnetic field, by determining in exact analytical form various many-body thermodynamic properties and the Hall coefficient. The results suggest exotic possibilities that necessitate very careful experimental investigation. In this alternate form of Quantum Hall Effect, non-linear phenomena related to the global magnetization, energy and Hall conductivity (the latter depending on the strengths of magnetic B- and electric E-fields) emerge without using perturbation methods, to all orders of E-field and B-field strengths. Interestingly enough, when the value of the electric field is sufficiently strong, fractional quantization also emerges, whose topological stability has to be verified.展开更多
The effect of a pseudo Aharonov-Bohm(AB) magnetic field generated by a disclination on a two-dimensional electron gas in graphene is addressed in the continuum limit within the geometric approach. The influence of the...The effect of a pseudo Aharonov-Bohm(AB) magnetic field generated by a disclination on a two-dimensional electron gas in graphene is addressed in the continuum limit within the geometric approach. The influence of the coupling between the spinor fields and the singular conical curvature is investigated, which shows that singularities have pronounced impact in the Hall conductivity. Moreover, the degeneracy related to the Dirac valleys is broken for negative values of the angular momentum quantum numbers, ?, including ? ≡ 0. In this case, a Hall plateau develops at the null filling factor. Obtaining the Hall conductivity by summing over the positive and the negative ?′s, the null Landau level is recovered and the plateau at the null filling factor disappears. In any case, the standard plateaus, which are seen in a flat graphene are not obtained with these curvature and singular effects.展开更多
We develop a model Hamiltonian to treat intrinsic anomalous Hall conductivity in dilute magnetic semiconductor (DMS) of type (III, Mn, V) and obtain the Berry potential and Berry curvature which are responsible for in...We develop a model Hamiltonian to treat intrinsic anomalous Hall conductivity in dilute magnetic semiconductor (DMS) of type (III, Mn, V) and obtain the Berry potential and Berry curvature which are responsible for intrinsic anomalous Hall conductivity in Ga1-x MnxAs DMS. Based on Kubo formalism, we establish the relation between Berry curvature and intrinsic anomalous Hall conductivity. We find that for strong spin-orbit interaction intrinsic anomalous Hall conductivity is quantized which is in agreement with recent experimental observation. In addition, we show that the intrinsic anomalous Hall conductivity (AHC) can be controlled by changing concentration of magnetic impurities as well as exchange field. Since Berry curvature related contribution of anomalous Hall conductivity is believed to be dissipationless, our result is a significant step toward achieving dissipationless electron transport in technologically relevant conditions in emerging of spintronics.展开更多
Density functional calculations have been performed to investigate the adsorption of twenty two different kinds of metal adatoms on graphene-like BC3. In contrast to the graphene adsorbed with adatoms, the BC3 with ad...Density functional calculations have been performed to investigate the adsorption of twenty two different kinds of metal adatoms on graphene-like BC3. In contrast to the graphene adsorbed with adatoms, the BC3 with adatoms shows many interesting properties.(1) The interaction between the metal adatoms and the BC3 sheet is remarkably strong. The Li, Na, K, and Ca possess the binding energies larger than the cohesive energies of their corresponding bulk metals.(2)The Li, Na, and K adatoms form approximately ideal ionic bonds with BC3, while the Be, Mg, and Ca adatoms form ionic bonds with BC3 with slight hybridization of covalent bonds. The Al, Ga, In, Sn, and all transition metal adatoms form covalent bonds with BC3.(3) For all the structures studied, there exhibit metal, half-metal, semiconducting, and spin-semiconducting behaviors. Especially, the BC3 with Co adatom shows a quantum anomalous Hall(QAH) phase with a Chern number of -1 based on local density approximation calculations.(4) For Li, Na, K, Ca, Ga, In, Sn, Ti, V, Cr,Ni, Pd, and Pt, there exists a trend that the adatom species with lower ionization potential have lower work function. Our results indicate the potential applications of functionalization of BC3 with metal adatoms.展开更多
Quantum theory with conjecture of fractional charge quantization, eigenfunctions for fractional charge quantization, fractional Fourier transform, Hermite function for fractional charge quantization, and eigenfunction...Quantum theory with conjecture of fractional charge quantization, eigenfunctions for fractional charge quantization, fractional Fourier transform, Hermite function for fractional charge quantization, and eigenfunction for a twisted and twigged electron quanta is developed and applied to resistivity, dielectricity, giant magneto resistance, Hall effect and conductance. Our theoretical relationship for quantum measurements is in good conformity and in agreement with most of the experimental results. These relationships will pave a new approach to quantum physics for deciphering measurements on single quantum particles without destroying them. Our results are in agreement with 2012 Physics Nobel Prize winning Scientists, Serge Haroche and David J. Wineland.展开更多
文摘We investigate the emerging consequences of an applied strong in-plane electric field on a macroscopically large graphene sheet subjected to a perpendicular magnetic field, by determining in exact analytical form various many-body thermodynamic properties and the Hall coefficient. The results suggest exotic possibilities that necessitate very careful experimental investigation. In this alternate form of Quantum Hall Effect, non-linear phenomena related to the global magnetization, energy and Hall conductivity (the latter depending on the strengths of magnetic B- and electric E-fields) emerge without using perturbation methods, to all orders of E-field and B-field strengths. Interestingly enough, when the value of the electric field is sufficiently strong, fractional quantization also emerges, whose topological stability has to be verified.
基金supported by the Brazilian agencies CNPq,CAPES,FAPEMA and FAPEMIG
文摘The effect of a pseudo Aharonov-Bohm(AB) magnetic field generated by a disclination on a two-dimensional electron gas in graphene is addressed in the continuum limit within the geometric approach. The influence of the coupling between the spinor fields and the singular conical curvature is investigated, which shows that singularities have pronounced impact in the Hall conductivity. Moreover, the degeneracy related to the Dirac valleys is broken for negative values of the angular momentum quantum numbers, ?, including ? ≡ 0. In this case, a Hall plateau develops at the null filling factor. Obtaining the Hall conductivity by summing over the positive and the negative ?′s, the null Landau level is recovered and the plateau at the null filling factor disappears. In any case, the standard plateaus, which are seen in a flat graphene are not obtained with these curvature and singular effects.
文摘We develop a model Hamiltonian to treat intrinsic anomalous Hall conductivity in dilute magnetic semiconductor (DMS) of type (III, Mn, V) and obtain the Berry potential and Berry curvature which are responsible for intrinsic anomalous Hall conductivity in Ga1-x MnxAs DMS. Based on Kubo formalism, we establish the relation between Berry curvature and intrinsic anomalous Hall conductivity. We find that for strong spin-orbit interaction intrinsic anomalous Hall conductivity is quantized which is in agreement with recent experimental observation. In addition, we show that the intrinsic anomalous Hall conductivity (AHC) can be controlled by changing concentration of magnetic impurities as well as exchange field. Since Berry curvature related contribution of anomalous Hall conductivity is believed to be dissipationless, our result is a significant step toward achieving dissipationless electron transport in technologically relevant conditions in emerging of spintronics.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11774396 and 11704322)Shandong Natural Science Funds for Doctoral Program,China(Grant No.ZR2017BA017)
文摘Density functional calculations have been performed to investigate the adsorption of twenty two different kinds of metal adatoms on graphene-like BC3. In contrast to the graphene adsorbed with adatoms, the BC3 with adatoms shows many interesting properties.(1) The interaction between the metal adatoms and the BC3 sheet is remarkably strong. The Li, Na, K, and Ca possess the binding energies larger than the cohesive energies of their corresponding bulk metals.(2)The Li, Na, and K adatoms form approximately ideal ionic bonds with BC3, while the Be, Mg, and Ca adatoms form ionic bonds with BC3 with slight hybridization of covalent bonds. The Al, Ga, In, Sn, and all transition metal adatoms form covalent bonds with BC3.(3) For all the structures studied, there exhibit metal, half-metal, semiconducting, and spin-semiconducting behaviors. Especially, the BC3 with Co adatom shows a quantum anomalous Hall(QAH) phase with a Chern number of -1 based on local density approximation calculations.(4) For Li, Na, K, Ca, Ga, In, Sn, Ti, V, Cr,Ni, Pd, and Pt, there exists a trend that the adatom species with lower ionization potential have lower work function. Our results indicate the potential applications of functionalization of BC3 with metal adatoms.
文摘Quantum theory with conjecture of fractional charge quantization, eigenfunctions for fractional charge quantization, fractional Fourier transform, Hermite function for fractional charge quantization, and eigenfunction for a twisted and twigged electron quanta is developed and applied to resistivity, dielectricity, giant magneto resistance, Hall effect and conductance. Our theoretical relationship for quantum measurements is in good conformity and in agreement with most of the experimental results. These relationships will pave a new approach to quantum physics for deciphering measurements on single quantum particles without destroying them. Our results are in agreement with 2012 Physics Nobel Prize winning Scientists, Serge Haroche and David J. Wineland.