期刊文献+

Strong Electric Field in 2D Graphene: The Integer Quantum Hall Regime from a Different (Many-Body) Perspective

Strong Electric Field in 2D Graphene: The Integer Quantum Hall Regime from a Different (Many-Body) Perspective
下载PDF
导出
摘要 We investigate the emerging consequences of an applied strong in-plane electric field on a macroscopically large graphene sheet subjected to a perpendicular magnetic field, by determining in exact analytical form various many-body thermodynamic properties and the Hall coefficient. The results suggest exotic possibilities that necessitate very careful experimental investigation. In this alternate form of Quantum Hall Effect, non-linear phenomena related to the global magnetization, energy and Hall conductivity (the latter depending on the strengths of magnetic B- and electric E-fields) emerge without using perturbation methods, to all orders of E-field and B-field strengths. Interestingly enough, when the value of the electric field is sufficiently strong, fractional quantization also emerges, whose topological stability has to be verified. We investigate the emerging consequences of an applied strong in-plane electric field on a macroscopically large graphene sheet subjected to a perpendicular magnetic field, by determining in exact analytical form various many-body thermodynamic properties and the Hall coefficient. The results suggest exotic possibilities that necessitate very careful experimental investigation. In this alternate form of Quantum Hall Effect, non-linear phenomena related to the global magnetization, energy and Hall conductivity (the latter depending on the strengths of magnetic B- and electric E-fields) emerge without using perturbation methods, to all orders of E-field and B-field strengths. Interestingly enough, when the value of the electric field is sufficiently strong, fractional quantization also emerges, whose topological stability has to be verified.
出处 《Advances in Materials Physics and Chemistry》 2018年第1期32-43,共12页 材料物理与化学进展(英文)
关键词 GRAPHENE LANDAU Levels Strong Electric Field Effects HALL Conductivity MAGNETIZATION Quantum HALL Effect Thermodynamics Graphene Landau Levels Strong Electric Field Effects Hall Conductivity Magnetization Quantum Hall Effect Thermodynamics
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部