The HY-2 satellite was successfully launched on 16 August 2011.It carried four microwave instruments into space for operationally observing dynamic ocean environment parameters on a global scale.The HY-2 satellite alt...The HY-2 satellite was successfully launched on 16 August 2011.It carried four microwave instruments into space for operationally observing dynamic ocean environment parameters on a global scale.The HY-2 satellite altimeter provides sea surface height(SSH),significant wave height(SWH),sea surface wind(SSW)speed,and polar ice sheet elevation,while the HY-2 satellite scatterometer provides SSW fields.At the same time,other oceanic and atmospheric parameters such as sea surface temperature(SST)and wind speed,water vapor and liquid water content can also be obtained by its onboard scanning microwave radiometer.In this paper,we show the data processing methods of the HY-2 satellite’s payloads.The preliminary results show that wind vector,SSH,SWH,and SST conform to the designed technical specifications.展开更多
The first Chinese microwave ocean environment satellite HY-2A, carrying a Ku-band scatteromenter (SCAT), was successfully launched in August 2011. The first quality assessment of HY-2A SCAT wind products is presente...The first Chinese microwave ocean environment satellite HY-2A, carrying a Ku-band scatteromenter (SCAT), was successfully launched in August 2011. The first quality assessment of HY-2A SCAT wind products is presented through the comparison of the first 6 months operationally released SCAT products with in situ data. The in situ winds from the National Data Buoy Center (NDBC) buoys, R/V Polarstern, Aurora Australis, Roger Revelle and PY30-1 oil platform, were converted to the 10 m equivalent neutral winds. The temporal and spatial differences between the HY-2A SCAT and the in situ observations were limited to less than 5 min and 12.5 km. For HY-2A SCAT wind speed products, the comparison and analysis using the NDBC buoys yield a bias of-0.49 m/s, a root mean square error (RMSE) of 1.3 m/s and an increase negative bias with increasing wind speed observation above 3 m/s. Although less accurate of HY-2A SCAT wind direction at low winds, the RMSE of 19.19° with a bias of 0.92° is found for wind speeds higher than 3 m/s. These results are found consistent with those from R/Vs and oil platform comparisons. Moreover, the NDBC buoy comparison results also suggest that the accuracy of HY-2A SCAT winds is consistent over the first half year of 2012. The encouraging assessment results over the first 6 months show that wind products from HY-2A SCAT will be useful for scientific community.展开更多
海洋二号卫星(HY-2)是中国第一颗海洋动力环境监测卫星,如何有效地利用海洋二号卫星扫描辐射计数据监测海冰成为亟待解决的问题。根据海冰与海水辐射特征,提出一种基于多频段双极化反演海冰密集度方法,该方法利用简化的辐射传输模型和...海洋二号卫星(HY-2)是中国第一颗海洋动力环境监测卫星,如何有效地利用海洋二号卫星扫描辐射计数据监测海冰成为亟待解决的问题。根据海冰与海水辐射特征,提出一种基于多频段双极化反演海冰密集度方法,该方法利用简化的辐射传输模型和地物参考点模拟亮温并逼近观测亮温。该方法与NASA Team 2和ABA算法具有很好的可比性。应用该方法,可以有效利用HY-2卫星反演海冰密集度,监测海冰边缘与面积变化。展开更多
HY-2 satellite is the first satellite for dynamic environmental parameters measurement of China,which was launched on 16th August 2011.A scanning microwave radiometer(RM) is carried for sea surface temperature(SST...HY-2 satellite is the first satellite for dynamic environmental parameters measurement of China,which was launched on 16th August 2011.A scanning microwave radiometer(RM) is carried for sea surface temperature(SST),sea surface wind speed,columnar water vapor and columnar cloud liquid water detection.In this paper,the initial SST product of RM was validated with in-situ data of National Data of Buoy Center(NDBC) mooring and Argo buoy.The validation results indicate the accuracy of RM SST is better than 1.7 C.The comparison of RM SST and WindSat SST shows the former is warmer than the latter at high sea surface wind speed and the difference between these SSTs is depend on the sea surface wind speed.Then,the relationship between the errors of RM SST and sea surface wind speed was analyzed using NDBC mooring measurements.Based on the results of assessment and errors analysis,the suggestions of taking account of the affection of sea surface wind speed and using sea surface wind speed and direction derived from the microwave scatteromter aboard on HY-2 for SST product calibration were given for retrieval algorithm improvement.展开更多
Antarctic sea ice is an important part of the Earth’s atmospheric system,and satellite remote sensing is an important technology for observing Antarctic sea ice.Whether Chinese Haiyang-2B(HY-2B)satellite altimeter da...Antarctic sea ice is an important part of the Earth’s atmospheric system,and satellite remote sensing is an important technology for observing Antarctic sea ice.Whether Chinese Haiyang-2B(HY-2B)satellite altimeter data could be used to estimate sea ice freeboard and provide alternative Antarctic sea ice thickness information with a high precision and long time series,as other radar altimetry satellites can,needs further investigation.This paper proposed an algorithm to discriminate leads and then retrieve sea ice freeboard and thickness from HY-2B radar altimeter data.We first collected the Moderate-resolution Imaging Spectroradiometer ice surface temperature(IST)product from the National Aeronautics and Space Administration to extract leads from the Antarctic waters and verified their accuracy through Sentinel-1 Synthetic Aperture Radar images.Second,a surface classification decision tree was generated for HY-2B satellite altimeter measurements of the Antarctic waters to extract leads and calculate local sea surface heights.We then estimated the Antarctic sea ice freeboard and thickness based on local sea surface heights and the static equilibrium equation.Finally,the retrieved HY-2B Antarctic sea ice thickness was compared with the CryoSat-2 sea ice thickness and the Antarctic Sea Ice Processes and Climate(ASPeCt)ship-based observed sea ice thickness.The results indicate that our classification decision tree constructed for HY-2B satellite altimeter measurements was reasonable,and the root mean square error of the obtained sea ice thickness compared to the ship measurements was 0.62 m.The proposed sea ice thickness algorithm for the HY-2B radar satellite fills a gap in this application domain for the HY-series satellites and can be a complement to existing Antarctic sea ice thickness products;this algorithm could provide long-time-series and large-scale sea ice thickness data that contribute to research on global climate change.展开更多
Estimated ocean subsurface fields derived from satellite observations provide potential data sources for operational marine environmental monitoring and prediction systems.This study employs a statistic regression rec...Estimated ocean subsurface fields derived from satellite observations provide potential data sources for operational marine environmental monitoring and prediction systems.This study employs a statistic regression reconstruction method,in combination with domestic autonomous sea surface height and sea surface temperature observations from the Haiyang-2(HY-2)satellite fusion data,to establish an operational quasi-realtime three-dimensional(3D)temperature and salinity products over the Maritime Silk Road.These products feature a daily temporal resolution and a spatial resolution of 0.25°×0.25°and exhibit stability and continuity.We have demonstrated the accuracy of the reconstructed thermohaline fields in capturing the 3D thermohaline variations through comprehensive statistical evaluations,after comparing them against Argo observations and ocean analysis data from 2022.The results illustrate that the reconstructed fields effectively represent seasonal variations in oceanic subsurface structures,along with structural changes resulting from mesoscale processes,and the upper ocean’s responses to tropical cyclones.Furthermore,the incorporation of HY-2 satellite observations notably enhances the accuracy of temperature and salinity reconstructions in the Northwest Pacific Ocean and marginally improves salinity reconstruction accuracy in the North Indian Ocean when compared to the World Ocean Atlas 2018 monthly climatology thermohaline fields.As a result,the reconstructed product holds promise for providing quasi-real-time 3D temperature and salinity field information to facilitate fast decisionmaking during emergencies,and also offers foundational thermohaline fields for operational ocean reanalysis and forecasting systems.These contributions enhance the safety and stability of ocean subsurface activities and navigation.展开更多
During 2012 and 2014, China has two Haiyang(which means ocean in Chinese, referred to as HY) satellites operating normally in space which are HY-1B and HY-2A. HY-1B is an ocean color environment satellite which was la...During 2012 and 2014, China has two Haiyang(which means ocean in Chinese, referred to as HY) satellites operating normally in space which are HY-1B and HY-2A. HY-1B is an ocean color environment satellite which was launched in April 2007 to observe global ocean color and sea surface temperature, and HY-2A is an ocean dynamic environment satellite which was launched in August 2011 to obtain global marine dynamic environment parameters including sea surface height,significant wave height, ocean wind vectors, etc. Ocean observation data provided by HY-1B and HY-2A have been widely used by both domestic and international users in extensive areas such as ocean environment protection, ocean disaster prevention and reduction, marine environment forecast,ocean resource development and management, ocean investigations and scientific researches, etc.展开更多
A scanning microwave radiometer(RM) was launched on August 16,2011,on board HY-2 satellite.The six-month long global sea surface wind speeds observed by the HY-2 scanning microwave radiometer are preliminarily valid...A scanning microwave radiometer(RM) was launched on August 16,2011,on board HY-2 satellite.The six-month long global sea surface wind speeds observed by the HY-2 scanning microwave radiometer are preliminarily validated using in-situ measurements and WindSat observations,respectively,from January to June 2012.The wind speed root-mean-square(RMS) difference of the comparisons with in-situ data is 1.89 m/s for the measurements of NDBC and 1.72 m/s for the recent four-month data measured by PY30-1 oil platform,respectively.On a global scale,the wind speeds of HY-2 RM are compared with the sea surface wind speeds derived from WindSat,the RMS difference of 1.85 m/s for HY-2 RM collocated observations data set is calculated in the same period as above.With analyzing the global map of a mean difference between HY-2 RM and WindSat,it appears that the bias of the sea surface wind speed is obviously higher in the inshore regions.In the open sea,there is a relatively higher positive bias in the mid-latitude regions due to the overestimation of wind speed observations,while the wind speeds are underestimated in the Southern Ocean by HY-2 RM relative to WindSat observations.展开更多
研究利用神经网络方法处理微波散射计数据,反演海面风场。重点研究海洋二号(HY-2)卫星微波散射计数据反演,特别是中高风速条件下的风场反演。其中风速的反演基于后向传播(Back Propagation,BP)神经网络;多解风向的反演基于混合密度(Mixt...研究利用神经网络方法处理微波散射计数据,反演海面风场。重点研究海洋二号(HY-2)卫星微波散射计数据反演,特别是中高风速条件下的风场反演。其中风速的反演基于后向传播(Back Propagation,BP)神经网络;多解风向的反演基于混合密度(Mixture Density Network,MDN)神经网络,求解过程中的核函数采用高斯分布;网络训练的目标风场采用欧洲中期天气预报中心(European Centre for Medium-range Weather Foresting,ECMWF)模式风场。通过与ECMWF风场的比较,利用神经网络方法反演的风场可以满足HY-2微波散射计风场反演的精度要求。同时通过与国家卫星海洋应用中心发布的HY-2微波散射计L2B级风场产品相比较,表明该方法反演的风场更接近ECMWF模式风场。展开更多
基金supported by the National High-Tech Project of China(No.2008AA09A403)the Marine Public Welfare Project of China(No.201105032).
文摘The HY-2 satellite was successfully launched on 16 August 2011.It carried four microwave instruments into space for operationally observing dynamic ocean environment parameters on a global scale.The HY-2 satellite altimeter provides sea surface height(SSH),significant wave height(SWH),sea surface wind(SSW)speed,and polar ice sheet elevation,while the HY-2 satellite scatterometer provides SSW fields.At the same time,other oceanic and atmospheric parameters such as sea surface temperature(SST)and wind speed,water vapor and liquid water content can also be obtained by its onboard scanning microwave radiometer.In this paper,we show the data processing methods of the HY-2 satellite’s payloads.The preliminary results show that wind vector,SSH,SWH,and SST conform to the designed technical specifications.
基金The Marine Public Welfare Project of China under contract No.201105032the National High-Tech Project of China under contract No.2008AA09A403the fund of State Administration for Science,Technology and Industry for National Defense
文摘The first Chinese microwave ocean environment satellite HY-2A, carrying a Ku-band scatteromenter (SCAT), was successfully launched in August 2011. The first quality assessment of HY-2A SCAT wind products is presented through the comparison of the first 6 months operationally released SCAT products with in situ data. The in situ winds from the National Data Buoy Center (NDBC) buoys, R/V Polarstern, Aurora Australis, Roger Revelle and PY30-1 oil platform, were converted to the 10 m equivalent neutral winds. The temporal and spatial differences between the HY-2A SCAT and the in situ observations were limited to less than 5 min and 12.5 km. For HY-2A SCAT wind speed products, the comparison and analysis using the NDBC buoys yield a bias of-0.49 m/s, a root mean square error (RMSE) of 1.3 m/s and an increase negative bias with increasing wind speed observation above 3 m/s. Although less accurate of HY-2A SCAT wind direction at low winds, the RMSE of 19.19° with a bias of 0.92° is found for wind speeds higher than 3 m/s. These results are found consistent with those from R/Vs and oil platform comparisons. Moreover, the NDBC buoy comparison results also suggest that the accuracy of HY-2A SCAT winds is consistent over the first half year of 2012. The encouraging assessment results over the first 6 months show that wind products from HY-2A SCAT will be useful for scientific community.
文摘海洋二号卫星(HY-2)是中国第一颗海洋动力环境监测卫星,如何有效地利用海洋二号卫星扫描辐射计数据监测海冰成为亟待解决的问题。根据海冰与海水辐射特征,提出一种基于多频段双极化反演海冰密集度方法,该方法利用简化的辐射传输模型和地物参考点模拟亮温并逼近观测亮温。该方法与NASA Team 2和ABA算法具有很好的可比性。应用该方法,可以有效利用HY-2卫星反演海冰密集度,监测海冰边缘与面积变化。
基金The Marine Public Welfare Project of China under contract No.201105032the National High-Tech Project of China under contract No.2008AA09A403+1 种基金the fund of State Administration for ScienceTechnology and Industry for National Defense
文摘HY-2 satellite is the first satellite for dynamic environmental parameters measurement of China,which was launched on 16th August 2011.A scanning microwave radiometer(RM) is carried for sea surface temperature(SST),sea surface wind speed,columnar water vapor and columnar cloud liquid water detection.In this paper,the initial SST product of RM was validated with in-situ data of National Data of Buoy Center(NDBC) mooring and Argo buoy.The validation results indicate the accuracy of RM SST is better than 1.7 C.The comparison of RM SST and WindSat SST shows the former is warmer than the latter at high sea surface wind speed and the difference between these SSTs is depend on the sea surface wind speed.Then,the relationship between the errors of RM SST and sea surface wind speed was analyzed using NDBC mooring measurements.Based on the results of assessment and errors analysis,the suggestions of taking account of the affection of sea surface wind speed and using sea surface wind speed and direction derived from the microwave scatteromter aboard on HY-2 for SST product calibration were given for retrieval algorithm improvement.
基金The National Natural Science Foundation of China under contract No.42076235.
文摘Antarctic sea ice is an important part of the Earth’s atmospheric system,and satellite remote sensing is an important technology for observing Antarctic sea ice.Whether Chinese Haiyang-2B(HY-2B)satellite altimeter data could be used to estimate sea ice freeboard and provide alternative Antarctic sea ice thickness information with a high precision and long time series,as other radar altimetry satellites can,needs further investigation.This paper proposed an algorithm to discriminate leads and then retrieve sea ice freeboard and thickness from HY-2B radar altimeter data.We first collected the Moderate-resolution Imaging Spectroradiometer ice surface temperature(IST)product from the National Aeronautics and Space Administration to extract leads from the Antarctic waters and verified their accuracy through Sentinel-1 Synthetic Aperture Radar images.Second,a surface classification decision tree was generated for HY-2B satellite altimeter measurements of the Antarctic waters to extract leads and calculate local sea surface heights.We then estimated the Antarctic sea ice freeboard and thickness based on local sea surface heights and the static equilibrium equation.Finally,the retrieved HY-2B Antarctic sea ice thickness was compared with the CryoSat-2 sea ice thickness and the Antarctic Sea Ice Processes and Climate(ASPeCt)ship-based observed sea ice thickness.The results indicate that our classification decision tree constructed for HY-2B satellite altimeter measurements was reasonable,and the root mean square error of the obtained sea ice thickness compared to the ship measurements was 0.62 m.The proposed sea ice thickness algorithm for the HY-2B radar satellite fills a gap in this application domain for the HY-series satellites and can be a complement to existing Antarctic sea ice thickness products;this algorithm could provide long-time-series and large-scale sea ice thickness data that contribute to research on global climate change.
基金The China-ASEAN Marine Cooperation Foundationthe Fundamental Research Funds for the Central Universities under contract No.B210203041+1 种基金the Postgraduate Research&Practice Innovation Program of Jiangsu Province under contract No.KYCX23_0657the opening project of the Key Laboratory of Marine Environmental Information Technology of Ministry of Natural Resources under contract No.521037412.
文摘Estimated ocean subsurface fields derived from satellite observations provide potential data sources for operational marine environmental monitoring and prediction systems.This study employs a statistic regression reconstruction method,in combination with domestic autonomous sea surface height and sea surface temperature observations from the Haiyang-2(HY-2)satellite fusion data,to establish an operational quasi-realtime three-dimensional(3D)temperature and salinity products over the Maritime Silk Road.These products feature a daily temporal resolution and a spatial resolution of 0.25°×0.25°and exhibit stability and continuity.We have demonstrated the accuracy of the reconstructed thermohaline fields in capturing the 3D thermohaline variations through comprehensive statistical evaluations,after comparing them against Argo observations and ocean analysis data from 2022.The results illustrate that the reconstructed fields effectively represent seasonal variations in oceanic subsurface structures,along with structural changes resulting from mesoscale processes,and the upper ocean’s responses to tropical cyclones.Furthermore,the incorporation of HY-2 satellite observations notably enhances the accuracy of temperature and salinity reconstructions in the Northwest Pacific Ocean and marginally improves salinity reconstruction accuracy in the North Indian Ocean when compared to the World Ocean Atlas 2018 monthly climatology thermohaline fields.As a result,the reconstructed product holds promise for providing quasi-real-time 3D temperature and salinity field information to facilitate fast decisionmaking during emergencies,and also offers foundational thermohaline fields for operational ocean reanalysis and forecasting systems.These contributions enhance the safety and stability of ocean subsurface activities and navigation.
文摘During 2012 and 2014, China has two Haiyang(which means ocean in Chinese, referred to as HY) satellites operating normally in space which are HY-1B and HY-2A. HY-1B is an ocean color environment satellite which was launched in April 2007 to observe global ocean color and sea surface temperature, and HY-2A is an ocean dynamic environment satellite which was launched in August 2011 to obtain global marine dynamic environment parameters including sea surface height,significant wave height, ocean wind vectors, etc. Ocean observation data provided by HY-1B and HY-2A have been widely used by both domestic and international users in extensive areas such as ocean environment protection, ocean disaster prevention and reduction, marine environment forecast,ocean resource development and management, ocean investigations and scientific researches, etc.
基金The National High-Tech Project of China under contract No.2008AA09A403the Marine Public Welfare Project of China under contract No.201105032
文摘A scanning microwave radiometer(RM) was launched on August 16,2011,on board HY-2 satellite.The six-month long global sea surface wind speeds observed by the HY-2 scanning microwave radiometer are preliminarily validated using in-situ measurements and WindSat observations,respectively,from January to June 2012.The wind speed root-mean-square(RMS) difference of the comparisons with in-situ data is 1.89 m/s for the measurements of NDBC and 1.72 m/s for the recent four-month data measured by PY30-1 oil platform,respectively.On a global scale,the wind speeds of HY-2 RM are compared with the sea surface wind speeds derived from WindSat,the RMS difference of 1.85 m/s for HY-2 RM collocated observations data set is calculated in the same period as above.With analyzing the global map of a mean difference between HY-2 RM and WindSat,it appears that the bias of the sea surface wind speed is obviously higher in the inshore regions.In the open sea,there is a relatively higher positive bias in the mid-latitude regions due to the overestimation of wind speed observations,while the wind speeds are underestimated in the Southern Ocean by HY-2 RM relative to WindSat observations.
文摘研究利用神经网络方法处理微波散射计数据,反演海面风场。重点研究海洋二号(HY-2)卫星微波散射计数据反演,特别是中高风速条件下的风场反演。其中风速的反演基于后向传播(Back Propagation,BP)神经网络;多解风向的反演基于混合密度(Mixture Density Network,MDN)神经网络,求解过程中的核函数采用高斯分布;网络训练的目标风场采用欧洲中期天气预报中心(European Centre for Medium-range Weather Foresting,ECMWF)模式风场。通过与ECMWF风场的比较,利用神经网络方法反演的风场可以满足HY-2微波散射计风场反演的精度要求。同时通过与国家卫星海洋应用中心发布的HY-2微波散射计L2B级风场产品相比较,表明该方法反演的风场更接近ECMWF模式风场。