Aimed at improving the bias stability of Fiber-Optic Gyroscope(FOG)-based inertial navigation systems in environments of various ambient temperatures,a novel temperaturecompensation method based on a correlation analy...Aimed at improving the bias stability of Fiber-Optic Gyroscope(FOG)-based inertial navigation systems in environments of various ambient temperatures,a novel temperaturecompensation method based on a correlation analysis of the same batch of FOGs is proposed.The empirical mode decomposition method was employed to filter the high-frequency noises of the FOGs.Then,the correlation information of the multiple FOGs was used to analyze the feasibility of the method.Eventually,the same residual error of the FOGs was compensated via the simple piecewise linear models.The experimental results indicate that excellent compensation effects for both high-and low-accuracy FOGs are achieved using the proposed method.Specifically,the accuracies of high-accuracy FOGs are improved by approximately 33.9%,20%,and 31.2%,while those of low-accuracy FOGs are improved by approximately 39.1%,20.8%,and 26.1%.The method exhibits the merits of simplicity,validity,and stability,and thus is expected to be widely used in engineering applications.展开更多
Allan variance(AV)stochastic process identification method for inertial sensors has successfully combined the wavelet transform denoising scheme.However,the latter usually employs a traditional hard threshold or soft ...Allan variance(AV)stochastic process identification method for inertial sensors has successfully combined the wavelet transform denoising scheme.However,the latter usually employs a traditional hard threshold or soft threshold that presents some mathematical problems.An adaptive dual threshold for discrete wavelet transform(DWT)denoising function overcomes the disadvantages of traditional approaches.Assume that two thresholds for noise and signal and special fuzzy evaluation function for the signal with range between the two thresholds assure continuity and overcome previous difficulties.On the basis of AV,an application for strap-down inertial navigation system(SINS)stochastic model extraction assures more efficient tuning of the augmented 21-state improved exact modeling Kalman filter(IEMKF)states.The experimental results show that the proposed algorithm is superior in denoising performance.Furthermore,the improved filter estimation of navigation solution is better than that of conventional Kalman filter(CKF).展开更多
基金supported by the Young Scientists Fund,China(No.62103021).
文摘Aimed at improving the bias stability of Fiber-Optic Gyroscope(FOG)-based inertial navigation systems in environments of various ambient temperatures,a novel temperaturecompensation method based on a correlation analysis of the same batch of FOGs is proposed.The empirical mode decomposition method was employed to filter the high-frequency noises of the FOGs.Then,the correlation information of the multiple FOGs was used to analyze the feasibility of the method.Eventually,the same residual error of the FOGs was compensated via the simple piecewise linear models.The experimental results indicate that excellent compensation effects for both high-and low-accuracy FOGs are achieved using the proposed method.Specifically,the accuracies of high-accuracy FOGs are improved by approximately 33.9%,20%,and 31.2%,while those of low-accuracy FOGs are improved by approximately 39.1%,20.8%,and 26.1%.The method exhibits the merits of simplicity,validity,and stability,and thus is expected to be widely used in engineering applications.
文摘Allan variance(AV)stochastic process identification method for inertial sensors has successfully combined the wavelet transform denoising scheme.However,the latter usually employs a traditional hard threshold or soft threshold that presents some mathematical problems.An adaptive dual threshold for discrete wavelet transform(DWT)denoising function overcomes the disadvantages of traditional approaches.Assume that two thresholds for noise and signal and special fuzzy evaluation function for the signal with range between the two thresholds assure continuity and overcome previous difficulties.On the basis of AV,an application for strap-down inertial navigation system(SINS)stochastic model extraction assures more efficient tuning of the augmented 21-state improved exact modeling Kalman filter(IEMKF)states.The experimental results show that the proposed algorithm is superior in denoising performance.Furthermore,the improved filter estimation of navigation solution is better than that of conventional Kalman filter(CKF).