摘要
Aimed at improving the bias stability of Fiber-Optic Gyroscope(FOG)-based inertial navigation systems in environments of various ambient temperatures,a novel temperaturecompensation method based on a correlation analysis of the same batch of FOGs is proposed.The empirical mode decomposition method was employed to filter the high-frequency noises of the FOGs.Then,the correlation information of the multiple FOGs was used to analyze the feasibility of the method.Eventually,the same residual error of the FOGs was compensated via the simple piecewise linear models.The experimental results indicate that excellent compensation effects for both high-and low-accuracy FOGs are achieved using the proposed method.Specifically,the accuracies of high-accuracy FOGs are improved by approximately 33.9%,20%,and 31.2%,while those of low-accuracy FOGs are improved by approximately 39.1%,20.8%,and 26.1%.The method exhibits the merits of simplicity,validity,and stability,and thus is expected to be widely used in engineering applications.
基金
supported by the Young Scientists Fund,China(No.62103021).