Environmental change is characterized as an alteration in the environment caused primarily by human activities and ecological processes that are natural. Given the fact that the southern part of the province of Haut-K...Environmental change is characterized as an alteration in the environment caused primarily by human activities and ecological processes that are natural. Given the fact that the southern part of the province of Haut-Katanga in the Democratic Republic of the Congo (DRC) is part of the African Copperbelt and has been a region of intense mining for decades, humans have affected the physical environment in various ways: such as overpopulation, suburbanization, wastage, deforestation. It is therefore important to track and control the changes in the area’s mining activities. This study aimed to analyze these changes using remote sensing techniques. Landsat satellite images from 2002 and 2022 were processed and classified to quantify changes in built-up area, agricultural land, and vegetation cover over the 20-year period. The classification results revealed sizable differences between the two time points, indicating considerable expansion of built-up land and declines in agricultural land and vegetation cover from 2002 to 2022 in Likasi. These findings provide evidence that urban growth has transformed the landscape in Likasi, likely at the expense of farmland and ecosystems. Further analysis of the remote sensing data could quantify the changes and model future trends to support sustainable land use planning. The land cover and land use analysis were performed with the assistance of the ERDAS 16.6.13 software by mapping LANDSAT data from two different years 2002 and 2022.展开更多
Land use/land cover (LULC) changes have become a central issue in current global change and sustainability research. Saudi Arabia has undergone significant change in land use and land cover since the government embark...Land use/land cover (LULC) changes have become a central issue in current global change and sustainability research. Saudi Arabia has undergone significant change in land use and land cover since the government embarked on a course of intense national development 30 years ago, as a result of huge national oil revenues. This study evaluates LULC change in Makkah and Al-Taif, Saudi Arabia from 1986 to 2013 using Landsat images. Maximum likelihood and object-oriented classification were used to develop LULC maps. The change detection was executed using post-classification comparison and GIS. The results indicated that urban areas have increased over the period by approximately 174% in Makkah and 113% in Al-Taif. Analysis of vegetation cover over the study area showed a variable distribution from year to year due to changing average precipitation in this environment. Object-based classification provided slightly greater accuracy than maximum likelihood classification. Information provided by satellite remote sensing can play an important role in quantifying and understanding the relationship between population growth and LULC changes, which can assist future planning and potential environmental impacts of expanding urban areas.展开更多
文摘Environmental change is characterized as an alteration in the environment caused primarily by human activities and ecological processes that are natural. Given the fact that the southern part of the province of Haut-Katanga in the Democratic Republic of the Congo (DRC) is part of the African Copperbelt and has been a region of intense mining for decades, humans have affected the physical environment in various ways: such as overpopulation, suburbanization, wastage, deforestation. It is therefore important to track and control the changes in the area’s mining activities. This study aimed to analyze these changes using remote sensing techniques. Landsat satellite images from 2002 and 2022 were processed and classified to quantify changes in built-up area, agricultural land, and vegetation cover over the 20-year period. The classification results revealed sizable differences between the two time points, indicating considerable expansion of built-up land and declines in agricultural land and vegetation cover from 2002 to 2022 in Likasi. These findings provide evidence that urban growth has transformed the landscape in Likasi, likely at the expense of farmland and ecosystems. Further analysis of the remote sensing data could quantify the changes and model future trends to support sustainable land use planning. The land cover and land use analysis were performed with the assistance of the ERDAS 16.6.13 software by mapping LANDSAT data from two different years 2002 and 2022.
文摘Land use/land cover (LULC) changes have become a central issue in current global change and sustainability research. Saudi Arabia has undergone significant change in land use and land cover since the government embarked on a course of intense national development 30 years ago, as a result of huge national oil revenues. This study evaluates LULC change in Makkah and Al-Taif, Saudi Arabia from 1986 to 2013 using Landsat images. Maximum likelihood and object-oriented classification were used to develop LULC maps. The change detection was executed using post-classification comparison and GIS. The results indicated that urban areas have increased over the period by approximately 174% in Makkah and 113% in Al-Taif. Analysis of vegetation cover over the study area showed a variable distribution from year to year due to changing average precipitation in this environment. Object-based classification provided slightly greater accuracy than maximum likelihood classification. Information provided by satellite remote sensing can play an important role in quantifying and understanding the relationship between population growth and LULC changes, which can assist future planning and potential environmental impacts of expanding urban areas.