期刊文献+

网络入侵检测系统中的频繁模式挖掘 被引量:1

Mining Frequent Patterns in Network Intrusion Detection
下载PDF
导出
摘要 为了解决网络入侵检测领域使用Apriori算法挖掘频繁模式效率不高、精度不够的问题,在FP-growth的基础上提出一种新的基于分割原理的PFP-growth算法。该算法采用分而治之的方法,既有效利用了FP-tree特性,又减轻了系统挖掘大容量数据库的负荷,使挖掘效率有了明显提高。另外设计了一种新的最小支持度设置法,使挖掘的频繁模式更精确。 In the network intrusion detection, Apriori algorithm is used to extract relative rules, but its processing precision and efficiency are not satisfactory. In order to resolve the problem, based on FP-growth, this paper proposes a new algorithm named PFP-growth, this algorithm applies an idea of divide and rule, makes good use of FP-tree, and eases the load of system when mining a large database, which makes its velocity improved obviously. Besides we design a new method to set min-support, which makes frequent patterns mined much precise.
出处 《计算机应用研究》 CSCD 北大核心 2006年第6期121-123,共3页 Application Research of Computers
基金 浙江省自然科学基金资助项目(Y104426) 浙江省教育厅高校科研计划资助项目(20040457)
关键词 入侵检测 关联规则 频繁模式 APRIORI FP—growth Intrusion Detection Association Rules Frequent Patterns Apriori FP-growth
  • 相关文献

参考文献5

  • 1Wenke Lee,Salvatore J Stolfo.Data Mining Approaches for Intrusion Detection[C].Proceedings of the 7th USENIX Security Symposium San Antonio,Texas,1998.79-94. 被引量:1
  • 2Wenke Lee,Sal Stolfo,Kui Mok.Algorithms for Mining System Audit Data[A].T Y Lin,Y Y Yao,L A Zadeh.Data Mining,Rough Sets,and Granular Computing[C].Physica-Verlag,2002. 被引量:1
  • 3R Agrawal,A Swami.Fast Algorithms for Mining Association Rules[C].VLDB'94,Santiago,Chile,1994.487-499. 被引量:1
  • 4J Han,J Pei,Y Yin.Mining Frequent Patterns Without Candidate Generation[C].Proc.of ACM-SIGMOD'2000,Daillas,TX,2000.1-12. 被引量:1
  • 5Savasere,E Omiecinski,S Navathe.An Efficient Algorithm for Mi-ning Association Rules[C].Proceedings of the 21st International Conference on Very Large Database,1995. 被引量:1

同被引文献7

  • 1隋毅,杜跃进.NIDS的改进研究[J].计算机工程,2007,33(9):120-122. 被引量:6
  • 2BAI Yuebin,KOBAYASHI H. Intrusion detection systems technology and development[A].Washington,DC:IEEE Computer Society,2003.710-715.doi:10.1016/j.steroids.2011.06.001. 被引量:1
  • 3BRUGGER S T. Data mining methods for network intrusion detection[EB/OL].http://www-static.cc.gatech.edu/~guofei/reading/brugger dmnid.pdf,2004. 被引量:1
  • 4SATO I,HIRATE Y,YAMANA H. Text Mining using PrefixSpan constrained by Item Interval and Item Attribute[A].2006. 被引量:1
  • 5DENBURGER,KIELMANN M. Balanced multicasting:high-through put communication for grid applications,Supereomputing[A].The Netherlands,2005. 被引量:1
  • 6MAHAJAN A,SOEWITO B,PARSI S K. Implementing high-Speed string matching hardware for network intrusion detection systems[A].United States of America,2008.doi:10.1097/NAN.0b013e3181cfd392. 被引量:1
  • 7贾世国,张昌城.基于数据挖掘的网络入侵检测系统设计与实现[J].计算机工程与应用,2008,44(14):134-137. 被引量:9

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部