期刊文献+
共找到88篇文章
< 1 2 5 >
每页显示 20 50 100
Nonlinear Conformal Gravitation
1
作者 J.-F. Pommaret 《Journal of Modern Physics》 2023年第11期1464-1496,共33页
In 1909 the brothers E. and F. Cosserat discovered a new nonlinear group theoretical approach to elasticity (EL), with the only experimental need to measure the EL constants. In a modern framework, they used the nonli... In 1909 the brothers E. and F. Cosserat discovered a new nonlinear group theoretical approach to elasticity (EL), with the only experimental need to measure the EL constants. In a modern framework, they used the nonlinear Spencer sequence instead of the nonlinear Janet sequence for the Lie groupoid defining the group of rigid motions of space. Following H. Weyl, our purpose is to compute for the first time the linear and nonlinear Spencer sequences for the Lie groupoid defining the conformal group of space-time in order to provide the mathematical foundations of both electromagnetism (EM) and gravitation (GR), with the only experimental need to measure the EM and GR constants. With a manifold of dimension n ≥ 3, the difficulty is to deal with the n nonlinear transformations that have been called “elations” by E. Cartan in 1922. Using the fact that dimension n = 4 has very specific properties for the computation of the Spencer cohomology, we also prove that there is no conceptual difference between the (nonlinear) Cosserat EL field or induction equations and the (linear) Maxwell EM field or induction equations. As for gravitation, the dimension n = 4 also allows to have a conformal factor defined everywhere but at the central attractive mass because the inversion law of the isotropy subgroupoid made by second order jets transforms attraction into repulsion. The mathematical foundations of both electromagnetism and gravitation are thus only depending on the structure of the conformal pseudogroup of space-time. 展开更多
关键词 Nonlinear Differential Sequences Linear Differential Sequences Lie groupoids Lie Algebroids Conformal Geometry Spencer Cohomology Maxwell Equations Cosserat Equations
下载PDF
Nonlinear Conformal Electromagnetism
2
作者 J.-F. Pommaret 《Journal of Modern Physics》 2022年第4期442-494,共53页
In 1909 the brothers E. and F. Cosserat discovered a new nonlinear group theoretical approach to elasticity (EL), with the only experimental need to measure the EL constants. In a modern language, their idea has been ... In 1909 the brothers E. and F. Cosserat discovered a new nonlinear group theoretical approach to elasticity (EL), with the only experimental need to measure the EL constants. In a modern language, their idea has been to use the nonlinear Spencer sequence instead of the nonlinear Janet sequence for the Lie groupoid defining the group of rigid motions of space. Following H. Weyl, our purpose is to compute for the first time the nonlinear Spencer sequence for the Lie groupoid defining the conformal group of space-time in order to provide the mathematical foundations of electromagnetism (EM), with the only experimental need to measure the EM constant in vacuum. With a manifold of dimension n, the difficulty is to deal with the n nonlinear transformations that have been called “elations” by E. Cartan in 1922. Using the fact that dimension n=4 has very specific properties for the computation of the Spencer cohomology, we prove that there is thus no conceptual difference between the Cosserat EL field or induction equations and the Maxwell EM field or induction equations. As a byproduct, the well known field/matter couplings (piezzoelectricity, photoelasticity, streaming birefringence, …) can be described abstractly, with the only experimental need to measure the corresponding coupling constants. The main consequence of this paper is the need to revisit the mathematical foundations of gauge theory (GT) because we have proved that EM was depending on the conformal group and not on U(1), with a shift by one step to the left in the physical interpretation of the differential sequence involved. 展开更多
关键词 Nonlinear Differential Sequences Linear Differential Sequences Lie groupoids Lie Algebroids Conformal Group Spencer Cohomology Maxwell Equations Cosserat Equations
下载PDF
Causal Groupoid Symmetries and Big Data
3
作者 Sergio Pissanetzky 《Applied Mathematics》 2014年第21期3489-3510,共22页
The big problem of Big Data is the lack of a machine learning process that scales and finds meaningful features. Humans fill in for the insufficient automation, but the complexity of the tasks outpaces the human mind... The big problem of Big Data is the lack of a machine learning process that scales and finds meaningful features. Humans fill in for the insufficient automation, but the complexity of the tasks outpaces the human mind’s capacity to comprehend the data. Heuristic partition methods may help but still need humans to adjust the parameters. The same problems exist in many other disciplines and technologies that depend on Big Data or Machine Learning. Proposed here is a fractal groupoid-theoretical method that recursively partitions the problem and requires no heuristics or human intervention. It takes two steps. First, make explicit the fundamental causal nature of information in the physical world by encoding it as a causal set. Second, construct a functor F: C C′ on the category of causal sets that morphs causal set C into smaller causal set C′ by partitioning C into a set of invariant groupoid-theoretical blocks. Repeating the construction, there arises a sequence of progressively smaller causal sets C, C′, C″, … The sequence defines a fractal hierarchy of features, with the features being invariant and hence endowed with a physical meaning, and the hierarchy being scale-free and hence ensuring proper scaling at all granularities. Fractals exist in nature nearly everywhere and at all physical scales, and invariants have long been known to be meaningful to us. The theory is also of interest for NP-hard combinatorial problems that can be expressed as a causal set, such as the Traveling Salesman problem. The recursive groupoid partition promoted by functor F works against their combinatorial complexity and appears to allow a low-order polynomial solution. A true test of this property requires special hardware, not yet available. However, as a proof of concept, a suite of sequential, non-heuristic algorithms were developed and used to solve a real-world 120-city problem of TSP on a personal computer. The results are reported. 展开更多
关键词 Big Data Combinatorial Algebra groupoids Machine Learning Scaling TRAVELING SALESMAN
下载PDF
Causal Groupoid Symmetries
4
作者 Sergio Pissanetzky 《Applied Mathematics》 2014年第4期628-641,共14页
Proposed here is a new framework for the analysis of complex systems as a non-explicitly programmed mathematical hierarchy of subsystems using only the fundamental principle of causality, the mathematics of groupoid s... Proposed here is a new framework for the analysis of complex systems as a non-explicitly programmed mathematical hierarchy of subsystems using only the fundamental principle of causality, the mathematics of groupoid symmetries, and a basic causal metric needed to support measurement in Physics. The complex system is described as a discrete set S of state variables. Causality is described by an acyclic partial order w on S, and is considered as a constraint on the set of allowed state transitions. Causal set (S, w) is the mathematical model of the system. The dynamics it describes is uncertain. Consequently, we focus on invariants, particularly group-theoretical block systems. The symmetry of S by itself is characterized by its symmetric group, which generates a trivial block system over S. The constraint of causality breaks this symmetry and degrades it to that of a groupoid, which may yield a non-trivial block system on S. In addition, partial order w determines a partial order for the blocks, and the set of blocks becomes a causal set with its own, smaller block system. Recursion yields a multilevel hierarchy of invariant blocks over S with the properties of a scale-free mathematical fractal. This is the invariant being sought. The finding hints at a deep connection between the principle of causality and a class of poorly understood phenomena characterized by the formation of hierarchies of patterns, such as emergence, selforganization, adaptation, intelligence, and semantics. The theory and a thought experiment are discussed and previous evidence is referenced. Several predictions in the human brain are confirmed with wide experimental bases. Applications are anticipated in many disciplines, including Biology, Neuroscience, Computation, Artificial Intelligence, and areas of Engineering such as system autonomy, robotics, systems integration, and image and voice recognition. 展开更多
关键词 HIERARCHIES groupoids Symmetry CAUSALITY Intelligence Adaptation Emergence
下载PDF
Groupoids,Discrete Mechanics,and Discrete Variation
5
作者 GUO Jia-Feng JIA Xiao-Yu WU Ke ZHAO Wei-Zhong 《Communications in Theoretical Physics》 SCIE CAS CSCD 2008年第9期545-550,共6页
After introducing some of the basic definitions and results from the theory of groupoid and Lie algebroid,we investigate the discrete Lagrangian mechanics from the viewpoint of groupoid theory and give the connection ... After introducing some of the basic definitions and results from the theory of groupoid and Lie algebroid,we investigate the discrete Lagrangian mechanics from the viewpoint of groupoid theory and give the connection betweengroupoids variation and the methods of the first and second discrete variational principles. 展开更多
关键词 groupoids Lie algebroids discrete field discrete variational principle
下载PDF
Duality theorem for smash coproduct over quantum groupoids
6
作者 周璇 刘玲 王栓宏 《Journal of Southeast University(English Edition)》 EI CAS 2010年第4期647-650,共4页
The duality theorem of generalized weak smash coproducts of weak module coalgebras and comodule coalgebras over quantum groupoids is studied.Let H be a weak Hopf algebra,C a left weak H-comodule coalgebra and D a left... The duality theorem of generalized weak smash coproducts of weak module coalgebras and comodule coalgebras over quantum groupoids is studied.Let H be a weak Hopf algebra,C a left weak H-comodule coalgebra and D a left weak H-module coalgebra.First,a weak generalized smash coproduct C×lH D over quantum groupoids is defined and the module and comodule structures on it are constructed.The weak generalized right smash coproduct C×rL D is similar.Then some isomorph-isms between them are obtained.Secondly,by introducing some concepts of a weak convolution invertible element,a weak co-inner coaction and a strongly relative co-inner coaction,a sufficient condition for C×rH D to be isomorphic to Cv D is obtained,where v∈WC(C,H)and the coaction of H on D is right strongly relative co-inner.Finally,the duality theorem for a generalized smash coproduct over quantum groupoids,(C×lH H)×lH H≌Cv(H×lH H),is obtained. 展开更多
关键词 weak Hopf algebras(quantum groupoids weak generalized smash coproducts weak module coalgebras weak comodule coalgebras weak bimodule coalgebras duality theorem
下载PDF
关于李群胚和泊松作用的讨论 被引量:3
7
作者 王宝勤 袁丽霞 赵小华 《纯粹数学与应用数学》 CSCD 北大核心 2007年第4期487-492,共6页
定义了纤维丛的相配群胚的概念,从作用的角度研究了李群胚与主丛的关系;给出了一个泊松群胚在泊松流形上的作用是泊松作用的充要条件;文末得到了一些关于泊松流形上Casimir函数的结果.
关键词 李群胚 相配群胚 泊松作用 CASIMIR函数
下载PDF
关于李群胚的几点讨论(英文) 被引量:2
8
作者 王宝勤 袁丽霞 侯传燕 《应用数学》 CSCD 北大核心 2006年第4期731-736,共6页
文章讨论了李群胚作为丛的一些性质,得出李群胚的内子群胚是主丛的结论;研究了李群胚在其内子群胚上的作用,并证明了李群胚上的Maurer-cartan形式在其任意左不变向量场上作用的结果为常数.文末推广了关于李代数胚态射的一个结论.
关键词 李群胚 李群胚的作用 Maurer-Cantan形式 李代数胚态射
下载PDF
李群胚与辛群胚的性质
9
作者 李修昌 钟德寿 《哈尔滨师范大学自然科学学报》 CAS 2003年第6期1-3,6,共4页
本文在已有研究成果的基础上 ,更加全面、系统地总结了 (李 )群胚 ,特别是辛群胚的有关性质 ,得到了一些重要的结论 .
关键词 李群胚 辛群胚 双截面 映射
下载PDF
关于几类广群
10
作者 李宪年 《陕西工学院学报》 2002年第4期69-71,共3页
 进一步研究了轮广群。为适应(2,0)型代数研究的需要,引进了里外广群,对称广群等概念,初步研究了它们之间的关系,获得了一些有益的结果,并进而证明了在BCI代数中,轮律等价于结合律。
关键词 广群 轮迴广群 里外广群 对称广群 结合BCI_代数
下载PDF
相配群胚上的诱导联络(英文) 被引量:3
11
作者 袁丽霞 王宝勤 《数学进展》 CSCD 北大核心 2008年第5期617-624,共8页
本文引入了相配群胚和相配主丛的概念,它们是一对具有相同传递函数的局部平凡李群胚(Г→_→P,α,β)和主丛(B,P,π,G).我们首先考察了相配群胚Г的内子群胚GГ的局部平凡化,利用这个局部平凡化证明了在B和GГ之间自然存在着一个丛同构... 本文引入了相配群胚和相配主丛的概念,它们是一对具有相同传递函数的局部平凡李群胚(Г→_→P,α,β)和主丛(B,P,π,G).我们首先考察了相配群胚Г的内子群胚GГ的局部平凡化,利用这个局部平凡化证明了在B和GГ之间自然存在着一个丛同构.通过这个丛同构以及B的联络日逐步得到了H在GГ和Г上的诱导联络,进而定义了Г上分别以α,β为投影的左联络和右联络,这两个联络都是在Г上整体有定义的,与以往李群胚上的联络只是定义在李代数胚上不同. 展开更多
关键词 相配群胚 诱导联络 联络
下载PDF
G匚W上的泊松群胚结构
12
作者 袁丽霞 王宝勤 卢维娜 《纯粹数学与应用数学》 CSCD 2010年第3期426-431,共6页
从泊松作用的角度考察了群胚上的半直积结构,定义了泊松群胚对泊松群胚的泊松作用,讨论了其性质,并证明了两个泊松群胚的半直积仍是泊松群胚,从而对群胚的半直积结构有了更多的认识.
关键词 泊松群胚 泊松群胚作用 半直积
下载PDF
辛群胚与泊松群胚作用的充要条件
13
作者 李修昌 宋建华 宋文 《数学的实践与认识》 CSCD 北大核心 2013年第20期236-239,共4页
研究了辛群胚与泊松群胚的作用.利用李群胚作用及相关性质,得到了李群胚作用成为辛群胚和泊松群胚作用的充要条件,推广了辛群胚和泊松群胚的性质,为辛群胚与泊松群胚理论的进一步研究起到了推动作用.
关键词 李群胚作用 辛群胚作用 泊松群胚作用 双截面
原文传递
关于群胚作用的轨道
14
作者 李修昌 宋建华 钟德寿 《数学杂志》 CSCD 北大核心 2013年第3期559-562,共4页
本文研究了群胚作用轨道的问题.利用群胚作用轨道同构的方法,获得了三种不同群胚作用下的自然微分同胚的结果,推广了群胚作用的性质从而为群胚作用的相关理论研究提供了必备的依据.
关键词 群胚作用 轨道 微分同胚 流形
下载PDF
单纯广群的准层和同伦纤维
15
作者 周良金 罗志明 《纯粹数学与应用数学》 CSCD 北大核心 2006年第4期571-576,共6页
显示了在设置C上的单纯广群的准层的范畴是个封闭模型范畴.证明了在一个单纯广群的准层G上的单纯函子X是局部弱等价于同伦纤维.
关键词 同伦范畴 单纯广群的准层 同伦纤维
下载PDF
对合亚交换广群 被引量:7
16
作者 周亚兰 《喀什师范学院学报》 2003年第3期8-10,共3页
由 P-半单 BCI-代数的某些特征性质引入对和亚交换广群的概念 ,并研究了它与 P-半单BCI-代数、结合 BCI-代数的关系 .
关键词 P—半单BCI—代数 BCI—代数 广群 对合广群 拟群
下载PDF
Groupoid Approach to Ergodic Dynamical System of Commutative von Neumann Algebra
17
作者 Nicholas O. Okeke Murphy E. Egwe 《Advances in Pure Mathematics》 2024年第3期167-184,共18页
Given a compact and regular Hausdorff measure space (X, μ), with μ a Radon measure, it is known that the generalised space M(X) of all the positive Radon measures on X is isomorphic to the space of essentially bound... Given a compact and regular Hausdorff measure space (X, μ), with μ a Radon measure, it is known that the generalised space M(X) of all the positive Radon measures on X is isomorphic to the space of essentially bounded functions L<sup>∞</sup>(X, μ) on X. We confirm that the commutative von Neumann algebras M⊂B(H), with H=L<sup>2</sup>(X, μ), are unitary equivariant to the maximal ideals of the commutative algebra C(X). Subsequenly, we use the measure groupoid to formulate the algebraic and topological structures of the commutative algebra C(X) following its action on M(X) and define its representation and ergodic dynamical system on the commutative von Neumann algebras of M of B(H) . 展开更多
关键词 Measure groupoid groupoid Equivalence Ergodic Action Convolution Algebra von Neumann Algebra Generalized Space
下载PDF
L─fuzzy广群与i—VL─fuzzy广群 被引量:5
18
作者 周亚兰 蒲义书 《安康师专学报》 2003年第1期47-49,共3页
本文对〔1〕中引入的L─fuzzy广群进行了继续讨论,研究了L─fuzzy子广群的象与逆象问题 同时引入了i—V L─fuzzy广群的概念 获得了某些有益的结果.
关键词 广群 I-V L-fuzzy广群 L-fuzzy广群
下载PDF
Continuous Orbit Equivalence of Semigroup Actions
19
作者 Xiang Qi QIANG Cheng Jun HOU 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2024年第6期1581-1598,共18页
We introduce notions of continuous orbit equivalence and its one-sided version for countable left Ore semigroup actions on compact spaces by surjective local homeomorphisms,and characterize them in terms of the corres... We introduce notions of continuous orbit equivalence and its one-sided version for countable left Ore semigroup actions on compact spaces by surjective local homeomorphisms,and characterize them in terms of the corresponding transformation groupoids and their operator algebras.In particular,we show that two essentially free semigroup actions on totally disconnected compact spaces are continuously orbit equivalent if and only if there is a canonical abelian subalgebra preserving C^(∗)-isomorphism between the associated transformation groupoid C^(∗)-algebras.We also give some examples of orbit equivalence,consider the special case of semigroup actions by homeomorphisms and relate continuous orbit equivalence of semigroup actions to that of the associated group actions. 展开更多
关键词 Semigroup action continuous one-sided orbit equivalence continuous orbit equivalence groupoid C^(∗)-algebras
原文传递
Spectral Invariant Subalgebras of Reduced Groupoid C^*-algebras 被引量:2
20
作者 Cheng Jun HOU 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2017年第4期526-544,共19页
We introduce the notion of property(RD) for a locally compact, Hausdorff and r-discrete groupoid G, and show that the set S~l(G) of rapidly decreasing functions on G with respect to a continuous length function l is a... We introduce the notion of property(RD) for a locally compact, Hausdorff and r-discrete groupoid G, and show that the set S~l(G) of rapidly decreasing functions on G with respect to a continuous length function l is a dense spectral invariant and Fréchet *-subalgebra of the reduced groupoid C~*-algebra C~*(G) of G when G has property(RD) with respect to l, so the K-theories of both algebras are isomorphic under inclusion. Each normalized cocycle c on G, together with an invariant probability measure on the unit space G~0 of G, gives rise to a canonical map τon the algebra C(G) of complex continuous functions with compact support on G. We show that the map τcan be extended continuously to S~l(G) and plays the same role as an n-trace on C~*(G) when G has property(RD) and c is of polynomial growth with respect to l, so the Connes’ fundament paring between the K-theory and the cyclic cohomology gives us the K-theory invariants on C~*(G). 展开更多
关键词 groupoid C*-algebra property(RD) spectral invariance
原文传递
上一页 1 2 5 下一页 到第
使用帮助 返回顶部