期刊文献+

关于李群胚的几点讨论(英文) 被引量:2

Several Discussions on Lie groupoids
下载PDF
导出
摘要 文章讨论了李群胚作为丛的一些性质,得出李群胚的内子群胚是主丛的结论;研究了李群胚在其内子群胚上的作用,并证明了李群胚上的Maurer-cartan形式在其任意左不变向量场上作用的结果为常数.文末推广了关于李代数胚态射的一个结论. In this paper, we discussed some properties of Lie groupoids as a bundle, and obtained the conclusion that its Inner subgroupoids is a principal bundle. Studied the actions of Lie groupoids on its Inner subgroupoids, proved the result that its Maurer-Cartan forms acting on left invariant vector field is a constant. A proposition about the morphisms of Lie algebroids is generalized.
出处 《应用数学》 CSCD 北大核心 2006年第4期731-736,共6页 Mathematica Applicata
基金 Supported by National Natural Science Foundation of China (10472100)
关键词 李群胚 李群胚的作用 Maurer-Cantan形式 李代数胚态射 Lie groupoids Action on Lie groupoids Maurer-Cartan forms Morphisms of Lie algebroids
  • 相关文献

参考文献14

  • 1陈省身,陈维桓著..微分几何讲义[M].北京:北京大学出版社,2001:375.
  • 2陈维桓,李兴校.黎曼几何引论[M].北京:北京大学出版社,2002. 被引量:19
  • 3陈维桓..微分流形初步[M],2001.
  • 4贺龙光著..辛几何与泊松几何引论[M].北京:首都师范大学出版社,2001:301.
  • 5Mackenzie K. Lie groupoids and Lie algebroids in Differential Geometry[M]. London: Mathematical Society Lecture Note, Cambridge University Press, 1987,124. 被引量:1
  • 6Husemoller D. Fiber Bundles[M]. New York: McGraw-Hill, 1996. 被引量:1
  • 7Weinstein A. Coisotropic calculus and Poisson groupoids[J]. Japan, Math. Soc. , 1988,40(4) :705-727. 被引量:1
  • 8Liu zhangju, Weinstein A, Xu P. Dirac structures and Poisson homogeneous spaces[J]. Commun. Math.Phys. , 1998,121 - 144. 被引量:1
  • 9Boothby W M. An introduction to Differentiable Manifolds and Riemannian Geometry[M]. New York:Academic Press, 1975. 被引量:1
  • 10Higgins P J, Mackenzie K. Algebraic constructions in the category of Lie algebroids[J]. J. Algebra,1990,129:194-230. 被引量:1

共引文献18

同被引文献12

  • 1王宝勤,侯传燕,袁丽霞.有关Poisson流形上组合算符的讨论[J].工程数学学报,2006,23(2):377-380. 被引量:6
  • 2Mackenzie K C H. General Theory of Lie Groupoids and Lie Algebroids[M]. Cambridge: Cambridge University press,2005. 被引量:1
  • 3Liu Z J, Weinstein A, Xu Pin. Dirac structures and Poisson homogeneous spaces[J]. Commun. Math. Phys., 1998,192:121-144. 被引量:1
  • 4Liu Baokang. Some properties on product poisson manifolds[J]. J. Capital Nor. Univ., 1999,3(20):21-25. 被引量:1
  • 5Xu P. On Poisson groupoids[J]. Int. J. Math., 1995,6(1):101-124. 被引量:1
  • 6Chen Z, Liu Z J. On transitive Lie bialgebroids and Poisson groupoids[J]. Diff. Geom. Appl., 2005,22:253-274. 被引量:1
  • 7Weistein A. Poisson geometry[J]. Diff. Geom. Appl., 1998,9:213-238. 被引量:1
  • 8Liu Z J. Some remarks on dirac structures and poisson reductions[J]. Banach Center Publ., 2000, 51:165-173. 被引量:1
  • 9Mackenzie K C H, Xu P. Lie bialgebroids and poisson groupoids[J]. Duke Math., 1994, 18:415-452. 被引量:1
  • 10Mackenzie K C H. Lie Groupoids and Lie Algebroids in Differential Geometry[M]. Cambridge: Cambridge University Press,1987. 被引量:1

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部