期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
High-order Soliton Matrix for the Third-order Flow Equation of the Gerdjikov-Ivanov Hierarchy Through the Riemann-Hilbert Method
1
作者 Jin-yan ZHU Yong CHEN 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2024年第2期358-378,共21页
The Gerdjikov-Ivanov(GI)hierarchy is derived via recursion operator,in this article,we mainly investigate the third-order flow GI equation.In the framework of the Riemann-Hilbert method,the soliton matrices of the thi... The Gerdjikov-Ivanov(GI)hierarchy is derived via recursion operator,in this article,we mainly investigate the third-order flow GI equation.In the framework of the Riemann-Hilbert method,the soliton matrices of the third-order flow GI equation with simple zeros and elementary high-order zeros of Riemann-Hilbert problem are constructed through the standard dressing process.Taking advantage of this result,some properties and asymptotic analysis of single soliton solution and two soliton solution are discussed,and the simple elastic interaction of two soliton are proved.Compared with soliton solution of the classical second-order flow,we find that the higher-order dispersion term affects the propagation velocity,propagation direction and amplitude of the soliton.Finally,by means of a certain limit technique,the high-order soliton solution matrix for the third-order flow GI equation is derived. 展开更多
关键词 gerdjikov-ivanov hierarchy third-order flow GI equation Riemann-Hilbert method high-order soliton
原文传递
Soliton Solutions to the Coupled Gerdjikov-Ivanov Equation with Rogue-Wave-Like Phenomena 被引量:2
2
作者 Jian-Bing Zhang Ying-Yin Gongye Shou-Ting Chen 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第9期3-7,共5页
Bilinear forms of the coupled Gerdjikov–Ivanov equation are derived. The $N$-soliton solutions to the equation are obtained by Hirota's method. It is interesting that the two-soliton solutions can generate the rogue... Bilinear forms of the coupled Gerdjikov–Ivanov equation are derived. The $N$-soliton solutions to the equation are obtained by Hirota's method. It is interesting that the two-soliton solutions can generate the rogue-wave-like phenomena by selecting special parameters. The equation can be reduced to the Gerdjikov–Ivanov equation as well as its bilinear forms and its solutions. 展开更多
关键词 exp Soliton Solutions to the Coupled gerdjikov-ivanov Equation with Rogue-Wave-Like Phenomena GI
下载PDF
Soliton molecules and dynamics of the smooth positon for the Gerdjikov–Ivanov equation 被引量:2
3
作者 Xiangyu Yang Zhao Zhang Biao Li 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第10期180-185,共6页
Soliton molecules are firstly obtained by velocity resonance for the Gerdjikov–Ivanov equation, and n-order smooth positon solutions for the Gerdjikov–Ivanov equation are generated by means of the general determinan... Soliton molecules are firstly obtained by velocity resonance for the Gerdjikov–Ivanov equation, and n-order smooth positon solutions for the Gerdjikov–Ivanov equation are generated by means of the general determinant expression of n-soliton solution. The dynamics of the smooth positons of the Gerdjikov–Ivanov equation are discussed using the decomposition of the modulus square, the trajectories and time-dependent "phase shifts" of positons after the collision can be described approximately. Additionally, some novel hybrid solutions consisting solitons and positons are presented and their rather complicated dynamics are revealed. 展开更多
关键词 soliton molecules degenerate Darboux transformation positons phase shift gerdjikov-ivanov equation
下载PDF
Exact solutions of the nonlocal Gerdjikov-Ivanov equation
4
作者 Miao Li Yi Zhang +1 位作者 Rusuo Ye Yu Lou 《Communications in Theoretical Physics》 SCIE CAS CSCD 2021年第10期47-54,共8页
The nonlocal nonlinear Gerdjikov-Ivanov(GI)equation is one of the most important integrable equations,which can be reduced from the third generic deformation of the derivative nonlinear Schr?dinger equation.The Darbou... The nonlocal nonlinear Gerdjikov-Ivanov(GI)equation is one of the most important integrable equations,which can be reduced from the third generic deformation of the derivative nonlinear Schr?dinger equation.The Darboux transformation is a successful method in solving many nonlocal equations with the help of symbolic computation.As applications,we obtain the bright-dark soliton,breather,rogue wave,kink,W-shaped soliton and periodic solutions of the nonlocal GI equation by constructing its 2 n-fold Darboux transformation.These solutions show rich wave structures for selections of different parameters.In all these instances we practically show that these solutions have different properties than the ones for local case. 展开更多
关键词 nonlocal gerdjikov-ivanov equation Darboux transformation rogue wave mixed soliton solutions
原文传递
Initial-Boundary Value Problem for Two-Component Gerdjikov–Ivanov Equation with 3 × 3 Lax Pair on Half-Line
5
作者 朱巧珍 范恩贵 徐建 《Communications in Theoretical Physics》 SCIE CAS CSCD 2017年第10期425-438,共14页
The Fokas unified method is Gerdjikov-Ivanonv equation on the half-line. expressed in terms of the solution of a 3 × 3 through the global relation.
关键词 two-component gerdjikov-ivanov equation initial-boundary value problem Fokas unifiedmethod Riemann-Hilbert problem
原文传递
Gerdjikov-Ivanov方程的精确解 被引量:21
6
作者 李向正 李修勇 +1 位作者 赵丽英 张金良 《物理学报》 SCIE EI CAS CSCD 北大核心 2008年第4期2031-2034,共4页
研究在量子场理论、弱非线性色散水波、非线性光学等领域中出现的Gerdjikov-Ivanov方程.对Gerdjikov-Ivanov方程的研究会导出具有高次非线性项的非线性数学物理方程.选取Liénard方程作为辅助常微分方程,借助于它并根据齐次平衡原则... 研究在量子场理论、弱非线性色散水波、非线性光学等领域中出现的Gerdjikov-Ivanov方程.对Gerdjikov-Ivanov方程的研究会导出具有高次非线性项的非线性数学物理方程.选取Liénard方程作为辅助常微分方程,借助于它并根据齐次平衡原则,求解了Gerdjikov-Ivanov方程,得到了该方程的包络孤立波解和包络正弦波解. 展开更多
关键词 齐次平衡原则 F展开法 gerdjikov-ivanov方程 包络孤立波解
原文传递
椭圆函数背景下Gerdjikov-Ivanov方程的多呼吸子
7
作者 姚慧 张海强 熊玮玥 《物理学报》 SCIE EI CAS CSCD 北大核心 2024年第4期9-20,共12页
作为非线性发展方程的一种特殊局域解,呼吸子具有包络振荡结构,且这种振荡呈现周期性变化.根据呼吸子在分布方向和演化方向的周期性,呼吸子主要有3种类型,即Kuznetsov-Ma呼吸子(Kuznetsov-Ma breather,KMB)、Akhmediev呼吸子(Akhmediev ... 作为非线性发展方程的一种特殊局域解,呼吸子具有包络振荡结构,且这种振荡呈现周期性变化.根据呼吸子在分布方向和演化方向的周期性,呼吸子主要有3种类型,即Kuznetsov-Ma呼吸子(Kuznetsov-Ma breather,KMB)、Akhmediev呼吸子(Akhmediev breather,AB)和一般呼吸子(general breather,GB).近年来,周期背景下的呼吸子现象在许多非线性物理领域被观察到,比如在非线性光纤光学、流体力学等.研究表明背景周期波的调制不稳定性可以激发呼吸子的产生,且周期背景下的呼吸子具有非常丰富的物理性质和相互作用.因此,最近在周期背景下呼吸子的时空结构和相互作用引起了广泛关注.Gerdjikov-Ivanov方程可以被用来描述在量子场理论、弱非线性色散水波、非线性光学等领域中的非线性物理现象.构造该模型的各种类型的解是非常有意义的工作.据了解,在椭圆函数背景下的多呼吸子之前还未被研究过.本文首先利用修正的平方波(modified squared wave,MSW)函数法和行波变换法获得该方程的椭圆函数解.然后,在椭圆函数解初始条件下得到该方程Lax对的通解.基于椭圆函数的转换公式以及积分公式,将势函数周期解化简为只含有Weierstrass椭圆函数.然后,利用达布变换构造出在椭圆函数背景下呼吸子的具体表达形式.在椭圆函数背景下,推导出3种不同类型的呼吸子,包括GB,KMB和AB.最后,给出3种呼吸子的时空结构三维图,并且展示它们之间相互作用的过程. 展开更多
关键词 gerdjikov-ivanov方程 椭圆函数 达布变换 呼吸子
下载PDF
简化齐次平衡原则与Gerdjikov-Ivanov方程的精确解 被引量:1
8
作者 李向正 郝祥晖 《河南科技大学学报(自然科学版)》 CAS 北大核心 2015年第1期82-85,9,共4页
发展和改进求解非线性发展方程的方法是一项重要的工作。简化了齐次平衡原则,用变化后的方法求解了Gerdjikov-Ivanov方程,得到了该方程的钟状孤波解、周期波解和代数孤波解。
关键词 gerdjikov-ivanov方程 齐次平衡原则 精确解
下载PDF
耦合Gerdjikov-Ivanov方程高阶孤子解的研究
9
作者 张毅菲 宋妮 商慧晶 《中北大学学报(自然科学版)》 CAS 2022年第2期112-115,128,共5页
基于Lax对方程和Darboux矩阵,利用广义Darboux变换推导了耦合Gerdjikov-Ivanov(cGI)方程高阶孤子解的迭代表达式.根据谱参数的实部和虚部是否相等进行了分类讨论,在选定谱参数的前提下,对方程解表达式中的自由参数进行取值,通过数值模... 基于Lax对方程和Darboux矩阵,利用广义Darboux变换推导了耦合Gerdjikov-Ivanov(cGI)方程高阶孤子解的迭代表达式.根据谱参数的实部和虚部是否相等进行了分类讨论,在选定谱参数的前提下,对方程解表达式中的自由参数进行取值,通过数值模拟得到二阶和三阶孤子相互作用的演化图,分析讨论了cGI方程高阶孤子的动力学特性.所得结果对研究孤子的传播轨迹和能量变化具有一定的参考意义. 展开更多
关键词 耦合gerdjikov-ivanov方程 经典Darboux变换 广义Darboux变换 孤子解
下载PDF
耦合Gerdjikov-Ivanov方程的多孤子解和无穷守恒律
10
作者 段求员 李琪 《数学的实践与认识》 北大核心 2017年第23期276-283,共8页
借用Hirota方法找到耦合Gerdjikov-Ivanov方程的多孤子解.描述了单孤子解和双孤子解的动力特征.耦合Gerdjikov-Ivanov方程可约化至Gerdjikov-Ivanov方程,并且得出Gerdj ikov-Ivanov方程的解.还给出了耦合Gerdj ikov-Ivanov方程的无穷多... 借用Hirota方法找到耦合Gerdjikov-Ivanov方程的多孤子解.描述了单孤子解和双孤子解的动力特征.耦合Gerdjikov-Ivanov方程可约化至Gerdjikov-Ivanov方程,并且得出Gerdj ikov-Ivanov方程的解.还给出了耦合Gerdj ikov-Ivanov方程的无穷多守恒律. 展开更多
关键词 多孤子解 耦合gerdjikov-ivanov方程 HIROTA方法 守恒律
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部