植物热激蛋白70(heat shock protein 70,Hsp70)是热激蛋白家族中保守、普遍表达的家族,有两个主要功能区:N端核酸结合区和C端底物结合区。通常Hsp70具有分子伴侣功能,参与新生蛋白的折叠、转运、重折叠变性蛋白、协助降解变性蛋白;Hsp7...植物热激蛋白70(heat shock protein 70,Hsp70)是热激蛋白家族中保守、普遍表达的家族,有两个主要功能区:N端核酸结合区和C端底物结合区。通常Hsp70具有分子伴侣功能,参与新生蛋白的折叠、转运、重折叠变性蛋白、协助降解变性蛋白;Hsp70不仅受高温胁迫诱导,且受其它多种胁迫诱导;同时,Hsp70参与植物正常发育过程。Hsp70基因分布广泛,序列高度保守,在植物基因组中以基因家族形式存在,最近广泛用于遗传多样性和系统发育研究。文章对植物中Hsp70的基因家族、结构、表达调控机制和生物学功能进行了综述。展开更多
Zinc finger-homeodomain proteins (ZHD) are present in many plants; however, the evolutionary history of the ZHD gene family remains largely unknown. We show here that ZHD genes are plant-specific, nearly all intronl...Zinc finger-homeodomain proteins (ZHD) are present in many plants; however, the evolutionary history of the ZHD gene family remains largely unknown. We show here that ZHD genes are plant-specific, nearly all intronless, and related to MINI ZINC FINGER (MIF) genes that possess only the zinc finger. Phylogenetic analyses of ZHD genes from representative land plants suggest that non.seed plant ZHD genes occupy basal positions and angiosperm homologs form seven distinct clades. Several clades contain genes from two or more major angiosperm groups, including eudicots, monocots, magnoliids, and other basal angiosperms, indicating that several duplications occurred before the diversification of flowering plants. In addition, specific lineages have experienced more recent duplications. Unlike the ZHD genes, MIFs are found only from seed plants, possibly derived from ZHDs by loss of the homeodomain before the divergence of seed plants. Moreover, the MIF genes have also undergone relatively recent gene duplications. Finally, genome duplication might have contributed substantially to the expansion of family size in angiosperms and caused a high level of functional redundancy/overlap in these genes.展开更多
LBD是一类具有LOB(lateral organ boundaries)结构域的基因家族,在植物发育过程中起到非常重要的作用。采用生物信息学方法,根据拟南芥LBD基因序列鉴定了普通烟草基因组中的LBD基因,并对家族成员进行了序列特征、系统发育和表达谱分...LBD是一类具有LOB(lateral organ boundaries)结构域的基因家族,在植物发育过程中起到非常重要的作用。采用生物信息学方法,根据拟南芥LBD基因序列鉴定了普通烟草基因组中的LBD基因,并对家族成员进行了序列特征、系统发育和表达谱分析。结果表明:普通烟草基因组中共有98个LBD基因成员,其基因结构相对简单,一般含有1~3个外显子。LBD基因家族可分成I和II两大类,两类均含有CX_2CX_6CX_3C保守结构域,但II类不含有LX_6LX_3LX_6L形成的"卷曲螺旋"二级结构,根据与拟南芥LBD蛋白构建的系统发育树则可细分成5个亚家族(Ia、Ib、Ic、Id和II)。将LBD基因与表达序列标签(EST)比对,发现36个基因有EST证据;EST、芯片数据和转录组数据分析表明:LBD基因具有不同的组织表达模式,部分基因表现出组织特异性。这些研究结果为普通烟草LBD基因家族功能的深入研究奠定了基础。展开更多
LBD(lateral organ boundaries)转录因子在植物生长发育和次生代谢调控中起着重要作用。为了发掘大麻LBD基因的功能,该研究在基因组和转录组水平上利用生物信息学手段,对大麻LBD基因家族进行系统鉴定,并对其表达模式进行分析。结果表明...LBD(lateral organ boundaries)转录因子在植物生长发育和次生代谢调控中起着重要作用。为了发掘大麻LBD基因的功能,该研究在基因组和转录组水平上利用生物信息学手段,对大麻LBD基因家族进行系统鉴定,并对其表达模式进行分析。结果表明,大麻LBD基因家族含有32个成员,可分成2大类,7亚族,ClassⅠ分为5个亚族分别是ClassⅠ_a至ClassⅠ_e,ClassⅡ分为2个亚族分别是ClassⅡ_a和ClassⅡ_b;理化性质分析显示,大麻LBD基因家族编码的氨基酸数目为172~356,等电点为4.92~9.43,相对分子质量为18 862.92~40 081.33,大部分成员定位于细胞核中;染色体定位显示32个成员不均一地分布在大麻的10条染色体上;LBD转录因子结构域、基因结构和Motifs相对保守,不同类成员特征相近;基因上游启动子区含有多种植物激素及环境因子相关的顺式作用元件,表明LBD基因的表达可能会受到激素和外界环境因素的诱导;大麻LBD基因在ZYS品种(低四氢大麻酚,高二氢大麻酚)茎、叶、花的表达模式不同,LBD基因家族成员主要在ZYS品种的花和茎中表达,而在叶中表达的成员很少;ClassⅡ成员CsLBD21和CsLBD23在花和茎中表达,CsLBD8和CsLBD18在花、茎和叶中均有表达,这些基因可能参与大麻的生长发育发育进而影响大麻素的生物合成。该研究为后续大麻LBD基因家族的功能研究奠定了基础。展开更多
文摘植物热激蛋白70(heat shock protein 70,Hsp70)是热激蛋白家族中保守、普遍表达的家族,有两个主要功能区:N端核酸结合区和C端底物结合区。通常Hsp70具有分子伴侣功能,参与新生蛋白的折叠、转运、重折叠变性蛋白、协助降解变性蛋白;Hsp70不仅受高温胁迫诱导,且受其它多种胁迫诱导;同时,Hsp70参与植物正常发育过程。Hsp70基因分布广泛,序列高度保守,在植物基因组中以基因家族形式存在,最近广泛用于遗传多样性和系统发育研究。文章对植物中Hsp70的基因家族、结构、表达调控机制和生物学功能进行了综述。
基金a National Science Foundation Plant Genome Grant for theFloral Genome Project (DBI-0115684)the Biology Department and the Huck Institutes of the Life Sciences, Pennsylvania State UniversityThisstudy was conducted using material generated in part with support from theNational Science Foundation (No. 0215923)
文摘Zinc finger-homeodomain proteins (ZHD) are present in many plants; however, the evolutionary history of the ZHD gene family remains largely unknown. We show here that ZHD genes are plant-specific, nearly all intronless, and related to MINI ZINC FINGER (MIF) genes that possess only the zinc finger. Phylogenetic analyses of ZHD genes from representative land plants suggest that non.seed plant ZHD genes occupy basal positions and angiosperm homologs form seven distinct clades. Several clades contain genes from two or more major angiosperm groups, including eudicots, monocots, magnoliids, and other basal angiosperms, indicating that several duplications occurred before the diversification of flowering plants. In addition, specific lineages have experienced more recent duplications. Unlike the ZHD genes, MIFs are found only from seed plants, possibly derived from ZHDs by loss of the homeodomain before the divergence of seed plants. Moreover, the MIF genes have also undergone relatively recent gene duplications. Finally, genome duplication might have contributed substantially to the expansion of family size in angiosperms and caused a high level of functional redundancy/overlap in these genes.
文摘LBD是一类具有LOB(lateral organ boundaries)结构域的基因家族,在植物发育过程中起到非常重要的作用。采用生物信息学方法,根据拟南芥LBD基因序列鉴定了普通烟草基因组中的LBD基因,并对家族成员进行了序列特征、系统发育和表达谱分析。结果表明:普通烟草基因组中共有98个LBD基因成员,其基因结构相对简单,一般含有1~3个外显子。LBD基因家族可分成I和II两大类,两类均含有CX_2CX_6CX_3C保守结构域,但II类不含有LX_6LX_3LX_6L形成的"卷曲螺旋"二级结构,根据与拟南芥LBD蛋白构建的系统发育树则可细分成5个亚家族(Ia、Ib、Ic、Id和II)。将LBD基因与表达序列标签(EST)比对,发现36个基因有EST证据;EST、芯片数据和转录组数据分析表明:LBD基因具有不同的组织表达模式,部分基因表现出组织特异性。这些研究结果为普通烟草LBD基因家族功能的深入研究奠定了基础。
基金supported by National Basic Research Programof China (973 Program) (2007CB109305)National Natural Science Foundation of China (30740011)Science & Technology Department of Zhejiang Province (2006C32019)
文摘LBD(lateral organ boundaries)转录因子在植物生长发育和次生代谢调控中起着重要作用。为了发掘大麻LBD基因的功能,该研究在基因组和转录组水平上利用生物信息学手段,对大麻LBD基因家族进行系统鉴定,并对其表达模式进行分析。结果表明,大麻LBD基因家族含有32个成员,可分成2大类,7亚族,ClassⅠ分为5个亚族分别是ClassⅠ_a至ClassⅠ_e,ClassⅡ分为2个亚族分别是ClassⅡ_a和ClassⅡ_b;理化性质分析显示,大麻LBD基因家族编码的氨基酸数目为172~356,等电点为4.92~9.43,相对分子质量为18 862.92~40 081.33,大部分成员定位于细胞核中;染色体定位显示32个成员不均一地分布在大麻的10条染色体上;LBD转录因子结构域、基因结构和Motifs相对保守,不同类成员特征相近;基因上游启动子区含有多种植物激素及环境因子相关的顺式作用元件,表明LBD基因的表达可能会受到激素和外界环境因素的诱导;大麻LBD基因在ZYS品种(低四氢大麻酚,高二氢大麻酚)茎、叶、花的表达模式不同,LBD基因家族成员主要在ZYS品种的花和茎中表达,而在叶中表达的成员很少;ClassⅡ成员CsLBD21和CsLBD23在花和茎中表达,CsLBD8和CsLBD18在花、茎和叶中均有表达,这些基因可能参与大麻的生长发育发育进而影响大麻素的生物合成。该研究为后续大麻LBD基因家族的功能研究奠定了基础。