固醇调节元件结合蛋白1(Sterol regulatory element-binding protein 1,SREBP-1)是重要的核转录因子之一,能调控内源性胆固醇、脂肪酸、甘油三酯和磷脂合成所需酶的表达,以维持血脂动态平衡。研究表明,SREBP-1及其靶基因网络的异常可引...固醇调节元件结合蛋白1(Sterol regulatory element-binding protein 1,SREBP-1)是重要的核转录因子之一,能调控内源性胆固醇、脂肪酸、甘油三酯和磷脂合成所需酶的表达,以维持血脂动态平衡。研究表明,SREBP-1及其靶基因网络的异常可引起胰岛素抵抗、Ⅱ型糖尿病、心功能紊乱、血管并发症和肝脂肪变等一系列代谢性疾病。近年高通量组学技术的发展极大扩展了对SREBP-1靶基因及其转录调控模式的了解。文章对SREBP-1蛋白结构、活化过程、DNA结合位点及其调控的靶基因等方面的研究进展进行了综述,并着重介绍了基于组学数据的转录调控网络的构建,这将有助于更好的认识SREBP-1在脂类代谢中的作用,为深入探讨脂质代谢性疾病的治疗提供新线索。展开更多
Hypobaric hypoxia (HH) exposure can cause serious brain injury as well as life-threatening cerebral edema in severe cases. Previous studies on the mechanisms of HH-induced brain injury have been conducted primarily us...Hypobaric hypoxia (HH) exposure can cause serious brain injury as well as life-threatening cerebral edema in severe cases. Previous studies on the mechanisms of HH-induced brain injury have been conducted primarily using non-primate animal models that are genetically distant to humans, thus hindering the development of disease treatment. Here, we report that cynomolgus monkeys (Macaca fascicularis) exposed to acute HH developed human-like HH syndrome involving severe brain injury and abnormal behavior. Transcriptome profiling of white blood cells and brain tissue from monkeys exposed to increasing altitude revealed the central role of the HIF-1 and other novel signaling pathways, such as the vitamin D receptor (VDR) signaling pathway, in co-regulating HH-induced inflammation processes. We also observed profound transcriptomic alterations in brains after exposure to acute HH, including the activation of angiogenesis and impairment of aerobic respiration and protein folding processes, which likely underlie the pathological effects of HH-induced brain injury. Administration of progesterone (PROG) and steroid neuroprotectant 5α-androst-3β,5,6β-triol (TRIOL) significantly attenuated brain injuries and rescued the transcriptomic changes induced by acute HH. Functional investigation of the affected genes suggested that these two neuroprotectants protect the brain by targeting different pathways, with PROG enhancing erythropoiesis and TRIOL suppressing glutamate-induced excitotoxicity. Thus, this study advances our understanding of the pathology induced by acute HH and provides potential compounds for the development of neuroprotectant drugs for therapeutic treatment.展开更多
In the post-genomic biology era,the reconstruction of gene regulatory networks from microarray gene expression data is very important to understand the underlying biological system,and it has been a challenging task i...In the post-genomic biology era,the reconstruction of gene regulatory networks from microarray gene expression data is very important to understand the underlying biological system,and it has been a challenging task in bioinformatics.The Bayesian network model has been used in reconstructing the gene regulatory network for its advantages,but how to determine the network structure and parameters is still important to be explored.This paper proposes a two-stage structure learning algorithm which integrates immune evolution algorithm to build a Bayesian network.The new algorithm is evaluated with the use of both simulated and yeast cell cycle data.The experimental results indicate that the proposed algorithm can find many of the known real regulatory relationships from literature and predict the others unknown with high validity and accuracy.展开更多
文摘固醇调节元件结合蛋白1(Sterol regulatory element-binding protein 1,SREBP-1)是重要的核转录因子之一,能调控内源性胆固醇、脂肪酸、甘油三酯和磷脂合成所需酶的表达,以维持血脂动态平衡。研究表明,SREBP-1及其靶基因网络的异常可引起胰岛素抵抗、Ⅱ型糖尿病、心功能紊乱、血管并发症和肝脂肪变等一系列代谢性疾病。近年高通量组学技术的发展极大扩展了对SREBP-1靶基因及其转录调控模式的了解。文章对SREBP-1蛋白结构、活化过程、DNA结合位点及其调控的靶基因等方面的研究进展进行了综述,并着重介绍了基于组学数据的转录调控网络的构建,这将有助于更好的认识SREBP-1在脂类代谢中的作用,为深入探讨脂质代谢性疾病的治疗提供新线索。
基金supported by the National Natural Science Foundation of China(81773711)to W.Y.Strategic Priority Research Program of the Chinese Academy of Sciences(XDB13000000)+6 种基金Lundbeck Foundation Grant(R190-2014-2827)Carlsberg Foundation Grant(CF16-0663)to G.J.Z.Science and Technology Program of Guangzhou,China(201704020103)to W.Y.Introduction of Innovative R&D Team Program of Guangdong Province(2013Y104)Leading Talent Project in Science and Technology of Guangzhou Development District(2019-L002)National Major Scientific and Technological Special Project for “Significant New Drugs Development”(2016ZX09101026)to S.Z.L.Key Projects of the Military Science and Technology PLA(AWS14C007 and AWS16J023)to Y.Q.G
文摘Hypobaric hypoxia (HH) exposure can cause serious brain injury as well as life-threatening cerebral edema in severe cases. Previous studies on the mechanisms of HH-induced brain injury have been conducted primarily using non-primate animal models that are genetically distant to humans, thus hindering the development of disease treatment. Here, we report that cynomolgus monkeys (Macaca fascicularis) exposed to acute HH developed human-like HH syndrome involving severe brain injury and abnormal behavior. Transcriptome profiling of white blood cells and brain tissue from monkeys exposed to increasing altitude revealed the central role of the HIF-1 and other novel signaling pathways, such as the vitamin D receptor (VDR) signaling pathway, in co-regulating HH-induced inflammation processes. We also observed profound transcriptomic alterations in brains after exposure to acute HH, including the activation of angiogenesis and impairment of aerobic respiration and protein folding processes, which likely underlie the pathological effects of HH-induced brain injury. Administration of progesterone (PROG) and steroid neuroprotectant 5α-androst-3β,5,6β-triol (TRIOL) significantly attenuated brain injuries and rescued the transcriptomic changes induced by acute HH. Functional investigation of the affected genes suggested that these two neuroprotectants protect the brain by targeting different pathways, with PROG enhancing erythropoiesis and TRIOL suppressing glutamate-induced excitotoxicity. Thus, this study advances our understanding of the pathology induced by acute HH and provides potential compounds for the development of neuroprotectant drugs for therapeutic treatment.
基金supported by National Natural Science Foundation of China (Grant Nos. 60433020, 60175024 and 60773095)European Commission under grant No. TH/Asia Link/010 (111084)the Key Science-Technology Project of the National Education Ministry of China (Grant No. 02090),and the Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, Jilin University, P. R. China
文摘In the post-genomic biology era,the reconstruction of gene regulatory networks from microarray gene expression data is very important to understand the underlying biological system,and it has been a challenging task in bioinformatics.The Bayesian network model has been used in reconstructing the gene regulatory network for its advantages,but how to determine the network structure and parameters is still important to be explored.This paper proposes a two-stage structure learning algorithm which integrates immune evolution algorithm to build a Bayesian network.The new algorithm is evaluated with the use of both simulated and yeast cell cycle data.The experimental results indicate that the proposed algorithm can find many of the known real regulatory relationships from literature and predict the others unknown with high validity and accuracy.