期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
GMRF随机场在纹理特征描述与识别中的应用 被引量:11
1
作者 王业琴 王辉 《计算机工程与应用》 CSCD 北大核心 2011年第25期202-204,219,共4页
为了建立描述自然纹理的参数体系,选用木材这种典型自然纹理为研究对象。提取了木材纹理的5阶GMRF参数,为了降低运算量,采用改进的模拟退火算法进行参数的优化与选择,形成了描述木材纹理最优GMRF参数体系,并将其送入分类器进行分类识别... 为了建立描述自然纹理的参数体系,选用木材这种典型自然纹理为研究对象。提取了木材纹理的5阶GMRF参数,为了降低运算量,采用改进的模拟退火算法进行参数的优化与选择,形成了描述木材纹理最优GMRF参数体系,并将其送入分类器进行分类识别。实验结果表明:集成神经网络的总体分类识别率为94.0%,近邻分类器的总体识别率为91.0%,获得了较高的分类识别率。说明用该参数体系对木材纹理进行分类识别是可行的,该参数体系也可用于与木材纹理相近的自然纹理的描述。 展开更多
关键词 自然纹理 木材 高斯-马尔可夫随机场 特征提取 分类
下载PDF
基于空间相关电离层模型的天波雷达目标跟踪 被引量:3
2
作者 郭振 王增福 +1 位作者 兰华 潘泉 《电子与信息学报》 EI CSCD 北大核心 2022年第1期354-362,共9页
天波超视距雷达(简称天波雷达)(OTHR)通过电离层反射效应可实现对多种高价值目标的远程预警。天波雷达目标跟踪算法设计中,电离层建模对其跟踪性能至关重要。该文考虑现实中电离层的空间相关性,提出一种基于高斯马尔可夫随机场(GMRF)的... 天波超视距雷达(简称天波雷达)(OTHR)通过电离层反射效应可实现对多种高价值目标的远程预警。天波雷达目标跟踪算法设计中,电离层建模对其跟踪性能至关重要。该文考虑现实中电离层的空间相关性,提出一种基于高斯马尔可夫随机场(GMRF)的电离层虚高模型,以及相应的天波雷达多路径目标跟踪方法。该方法在贝叶斯估计的基础上,对多路径杂波环境下目标状态估计与电离层虚高参数进行联合建模与估计。该方法有效建立起了不同电离层区域之间的相关性,能够在电离层量测有限的情况下推断未量测区域的电离层虚高,改善电离层虚高参数辨识精度,进而提高目标跟踪精度。仿真结果表明基于空间相关性的电离层模型可以有效改善天波雷达目标跟踪性能。 展开更多
关键词 天波超视距雷达 电离层模型 目标跟踪 高斯马尔可夫随机场 空间相关性
下载PDF
基于多特征组合的图像纹理分类 被引量:6
3
作者 黄荣娟 姜佳欣 +1 位作者 唐银凤 卢昕 《计算机应用与软件》 CSCD 2011年第8期12-16,46,共6页
在对纹理图像进行特征提取的算法中,高斯马尔可夫随机场(GMRF)、局部二值模式(LBP)和灰度共生矩阵(GLCM)这三种算法应用的较为广泛。常见的图像纹理分类做法是取某一种特征提取算法得到各种纹理的特征空间,进而配合分类算法进行分类。然... 在对纹理图像进行特征提取的算法中,高斯马尔可夫随机场(GMRF)、局部二值模式(LBP)和灰度共生矩阵(GLCM)这三种算法应用的较为广泛。常见的图像纹理分类做法是取某一种特征提取算法得到各种纹理的特征空间,进而配合分类算法进行分类。然而,这种做法的不足之处在于未能充分利用各种特征之间的关联,且选取某一种特征提取算法建立特征空间不具对比性。对此,提出一种多特征组合的方法,通过比较单个算法特征与组合特征的分类效果探究各算法特征在对纹理图像的分类上是否存在信息互补。实验结果表明单个算法特征在纹理分类上的确存在优势互补,实验中所得最佳组合特征将给定图像纹理的平均分类精度提高到96.9%。 展开更多
关键词 纹理分类 高斯马尔可夫随机场 局部二值模式 灰度共生矩阵 特征组合
下载PDF
基于特征级数据融合木材纹理分类的研究 被引量:8
4
作者 王辉 杨林 丁金华 《计算机工程与应用》 CSCD 北大核心 2010年第3期215-218,共4页
为了提高对木材纹理识别的精度,提出了一种基于融合灰度共生矩阵与高斯-马尔可夫随机场纹理参数的特征级数据融合木材纹理模式识别方法。首先,分别获取了以上两种木材纹理特征参数;然后,使用模拟退火算法将两种不同类型的纹理特征量在... 为了提高对木材纹理识别的精度,提出了一种基于融合灰度共生矩阵与高斯-马尔可夫随机场纹理参数的特征级数据融合木材纹理模式识别方法。首先,分别获取了以上两种木材纹理特征参数;然后,使用模拟退火算法将两种不同类型的纹理特征量在特征层上进行了融合。利用融合后的特征对木材纹理样本进行识别,BP神经网络分类器的识别率达到97.00%,表明数据融合后的特征参数对木材纹理识别是十分有效的。 展开更多
关键词 木材纹理 数据融合 模拟退火算法 灰度共生矩阵 高斯-马尔可夫随机场
下载PDF
基于模拟回火退火的DT-MR图像平滑和估计 被引量:1
5
作者 张相芬 张洪梅 田蔚风 《上海交通大学学报》 EI CAS CSCD 北大核心 2007年第4期654-657,共4页
在采用高斯-马尔可夫随机场(GMRF)对扩散张量磁共振成像(DT-MRI)的原始图像进行平滑和估计时,要根据Bayes准则对图像灰度进行最大后验(MAP)估计.为了避免陷入局部最小的“陷阱”和减小计算量,MAP估计采用了模拟回火退火方法(STA).通过... 在采用高斯-马尔可夫随机场(GMRF)对扩散张量磁共振成像(DT-MRI)的原始图像进行平滑和估计时,要根据Bayes准则对图像灰度进行最大后验(MAP)估计.为了避免陷入局部最小的“陷阱”和减小计算量,MAP估计采用了模拟回火退火方法(STA).通过对未加权图像和不同梯度脉冲下的加权图像(共7幅)同时进行平滑和估计.结果表明,基于STA对图像进行平滑和估计能够大大减少噪声影响,从而在图像信噪比很低的情况下仍能保证张量场完全正定.把本方法的实验结果与传统模拟退火(SA)方法的结果进行比较,表明基于STA的方法能够更加有效地消除噪声影响,减小计算量. 展开更多
关键词 扩散张量成像 高斯-马尔可夫随机场 平滑 模拟回火退火 最大后验
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部