Malignant tumors are complex structures composed of cancer cells and tumor microenvironmental cells.In this complex structure,cells cross-talk and interact,thus jointly promoting cancer development and metastasis.Rece...Malignant tumors are complex structures composed of cancer cells and tumor microenvironmental cells.In this complex structure,cells cross-talk and interact,thus jointly promoting cancer development and metastasis.Recently,immunoregulatory molecule-based cancer immunotherapy has greatly improved treatment efficacy for solid cancers,thus enabling some patients to achieve persistent responses or cure.However,owing to the development of drug-resistance and the low response rate,immunotherapy against the available targets PD-1/PD-L1 or CTLA-4 has limited benefits.Although combination therapies have been proposed to enhance the response rate,severe adverse effects are observed.Thus,alternative immune checkpoints must be identified.The SIGLECs are a family of immunoregulatory receptors(known as glyco-immune checkpoints)discovered in recent years.This review systematically describes the molecular characteristics of the SIGLECs,and discusses recent progress in areas including synthetic ligands,monoclonal antibody inhibitors,and Chimeric antigen receptor T(CAR-T)cells,with a focus on available strategies for blocking the sialylated glycan-SIGLEC axis.Targeting glyco-immune checkpoints can expand the scope of immune checkpoints and provide multiple options for new drug development.展开更多
Spermatogenesis, maturation, capacitation and fertilization are precisely regulated by glycosylation. However, the relationship between altered glycosylation patterns and the onset and development of reproductive diso...Spermatogenesis, maturation, capacitation and fertilization are precisely regulated by glycosylation. However, the relationship between altered glycosylation patterns and the onset and development of reproductive disorders is unclear, mainly limited by the lack of in situ imaging techniques for spermatozoa glycosylation. We developed an efficient and highly specific spermatozoa glycan imaging technique based on the robust chemoselective labeling of sialic acid(Sia) and N-acetyl-D-galactosamine(Gal/GalNAc). We further proposed a “tandem glycan chemoselective labeling” strategy to achieve simultaneous imaging of two types of glycans on spermatozoa. We applied the developed method to the spermatozoa from oligozoospermic patients and diabetic mice and found that these spermatozoa showed higher levels of Sia and Gal/Gal NAc expression than the normal groups. Moreover, spermatozoa from diabetic mice showed a severe decrease in number, viability, and forward motility, suggesting that in vivo glucose metabolism disorders may lead to an elevated level of spermatozoa glycosylation and have a correlation with the development of oligoasthenotspermia. Our work provides a research tool to reveal the relationship between glycosylation modification and spermatozoa quality, and a promising clue for the development of glycan-based reproductive markers.展开更多
The pandemic of the severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)has caused a high number of deaths in the world.To combat it,it is necessary to develop a better understanding of how the virus infects ho...The pandemic of the severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)has caused a high number of deaths in the world.To combat it,it is necessary to develop a better understanding of how the virus infects host cells.Infection normally starts with the attachment of the virus to cell-surface glycans like heparan sulfate(HS)and sialic acid-containing glycolipids/glycoproteins.In this study,we examined and compared the binding of the subunits and spike(S)proteins of SARS-CoV-2,SARS-Co V,and Middle East respiratory disease(MERS)-Co V to these glycans.Our results revealed that the S proteins and subunits can bind to HS in a sulfation-dependent manner and no binding with sialic acid residues was detected.Overall,this work suggests that HS binding may be a general mechanism for the attachment of these coronaviruses to host cells,and supports the potential importance of HS in infection and in the development of antiviral agents against these viruses.展开更多
Background Optimal gut health is important to maximize growth performance and feed efficiency in broiler chickens.A total of 1,365 one-day-old male Ross 308 broiler chickens were randomly divided into 5 treatments gro...Background Optimal gut health is important to maximize growth performance and feed efficiency in broiler chickens.A total of 1,365 one-day-old male Ross 308 broiler chickens were randomly divided into 5 treatments groups with 21 replicates,13 birds per replicate.The present research investigated effects of microbial muramidase or a precision glycan alone or in combination on growth performance,apparent total tract digestibility,total blood carotenoid content,intestinal villus length,meat quality and gut microbiota in broiler chickens.Treatments included:NC:negative control(basal diet group);PC:positive control(basal diet+0.02%probiotics);MR:basal diet+0.035%microbial muramidase;PG:basal diet+0.1%precision glycan;and MRPG:basal diet+0.025%MR+0.1%PG,respectively.Results MRPG group increased the body weight gain and feed intake(P<0.05)compared with NC group.Moreover,it significantly increased total serum carotenoid(P<0.05)and MRPG altered the microbial diversity in ileum contents.The MRPG treatment group increased the abundance of the phylum Firmicutes,and family Lachnospiraceae,Ruminococcaceae,Oscillospiraceae,Lactobacillaceae,Peptostreptococcaceae and decreased the abundance of the phylum Campilobacterota,Bacteroidota and family Bacteroidaceae.Compared with the NC group,the chickens fed MRPG showed significantly increased in duodenum villus length at end the trial.Conclusion In this study,overall results showed that the synergetic effects of MR and PG showed enhancing growth performance,total serum carotenoid level and altering gut microbiota composition of broilers.The current research indicates that co-supplementation of MR and PG in broiler diets enhances intestinal health,consequently leading to an increased broiler production.展开更多
High myopia has long been highly prevalent worldwide with a largely yet unexplained genetic contribution.To identify novel susceptibility genes for axial length(AL)in highly myopic eyes,a genome-wide association study...High myopia has long been highly prevalent worldwide with a largely yet unexplained genetic contribution.To identify novel susceptibility genes for axial length(AL)in highly myopic eyes,a genome-wide association study(GWAS)was performed using the genomic dataset of 350 deep whole-genome sequencing data from highly myopic patients.Top single nucleotide polymorphisms(SNPs)were functionally annotated.Immunofluorescence staining,quantitative polymerase chain reaction,and western blot were performed using neural retina of form-deprived myopic mice.Enrichment analyses were further performed.We identified the four top SNPs and found that ADAM Metallopeptidase With Thrombospondin Type 1 Motif 16(ADAMTS16)and Phosphatidylinositol Glycan Anchor Biosynthesis Class Z(PIGZ)had the potential of clinical signifi-cance.Animal experiments confirmed that PIGZ expression could be observed and showed higher expression level in form-deprived mice,especially in the ganglion cell layer.The messenger RNA(mRNA)levels of both ADAMTS16 and PIGZ were significantly higher in the neural retina of form-deprived eyes(p=0.005 and 0.007 respectively),and both proteins showed significantly upregulated expression in the neural retina of deprived eyes(p=0.004 and 0.042,respectively).Enrichment analysis revealed a significant role of cellular adhesion and signal transduction in AL,and also several AL-related pathways including circadian entrainment and inflammatory mediator regulation of transient receptor potential channels were proposed.In conclusion,the current study identified four novel SNPs associated with AL in highly myopic eyes and confirmed that the expression of ADAMTS16 and PIGZ was significantly upregulated in neural retina of deprived eyes.Enrichment analyses provided novel insight into the etiology of high myopia and opened avenues for future research interest.展开更多
Helicobacter pylori(H.pylori)is generally regarded as a human pathogen and a class 1 carcinogen,etiologically related to gastric and duodenal ulcers,gastric cancer,and mucosa-associated lymphoid tissue lymphoma.Howeve...Helicobacter pylori(H.pylori)is generally regarded as a human pathogen and a class 1 carcinogen,etiologically related to gastric and duodenal ulcers,gastric cancer,and mucosa-associated lymphoid tissue lymphoma.However,H.pylori can also be regarded as a commensal symbiont.Unlike other pathogenic/opportunistic bacteria,H.pylori colonization in infancy is facilitated by T helper type 2 immunity and leads to the development of immune tolerance.Fucosylated gastric mucin glycans,which are an important part of the innate and adaptive immune system,mediate the adhesion of H.pylori to the surface of the gastric epithelium,contributing to successful colonization.H.pylori may have beneficial effects on the host by regulating gastrointestinal(GI)microbiota and protecting against some allergic and autoimmune disorders and inflammatory bowel disease.The potential protective role against inflammatory bowel disease may be related to both modulation of the gut microbiota and the immunomodulatory properties of H.pylori.The inverse association between H.pylori and some potentially proinflammatory and/or procarcinogenic bacteria may suggest it regulates the GI microbiota.Eradication of H.pylori can cause various adverse effects and alter the GI microbiota,leading to short-term or long-term dysbiosis.Overall,studies have shown that gastric Actinobacteria decrease after H.pylori eradication,Proteobacteria increase during short-term follow-up and then return to baseline levels,and Enterobacteriaceae and Enterococcus increase in the short-term and interim follow-up.Various gastric mucosal bacteria(Actinomyces,Granulicatella,Parvimonas,Peptostreptococcus,Prevotella,Rothia,Streptococcus,Rhodococcus,and Lactobacillus)may contribute to precancerous gastric lesions and cancer itself after H.pylori eradication.H.pylori eradication can also lead to dysbiosis of the gut microbiota,with increased Proteobacteria and decreased Bacteroidetes and Actinobacteria.The increase in gut Proteobacteria may contribute to adverse effects during and after er展开更多
In this paper we investigated the stability of konjac glucomnnan(KGM) chain hydrogen networks based on the quantum spin model. Dissipative particle dynamics method was applied in the structure simulation of KGM. The...In this paper we investigated the stability of konjac glucomnnan(KGM) chain hydrogen networks based on the quantum spin model. Dissipative particle dynamics method was applied in the structure simulation of KGM. The results reveled that acetyl residues of KGM were bonded with water molecules in aqueous solutions. Increasing the hydrogen bond formation decreases the energy in acetyl system. The expect-valuation of the thermal state with respect to the Hamiltonian is negative. Hence, the total energy of konjac glucomnnan chain with the acetyl groups decreases, which indicates the increasing stability of konjac glucomnnan chain. Our approach could provide a new insight into the investigation on the stability of konjac glucomnnan chain.展开更多
Interaction between tumour cells and macrophages enables cancer cells to evade immune detection and clearance by interfering with macrophage phagocytosis.The anti-phagocytic signals regulated by anti-phagocytic protei...Interaction between tumour cells and macrophages enables cancer cells to evade immune detection and clearance by interfering with macrophage phagocytosis.The anti-phagocytic signals regulated by anti-phagocytic proteins are termed"don't eat me"signals;these signals include sialic acidbinding immunoglobulin-type lectin-10(Siglec-10)and the recently revealed CD24 immune checkpoint(ICP).In this study,we demonstrate that targeting a specific glycan on CD24 exhibits the potential to inhibit ICP.Sambucus nigra agglutinin(SNA),a sialic acid-binding lectin,was employed to block CD24 and to enhance phagocytosis in melanoma tumours.In addition,we prepared SNA-conjugated hollow gold-iron oxide nanoparticles for photothermal therapy of tumours.Our findings show that the combination treatment of SNA-conjugated photothermal nanoparticles and near-infrared exposure successfully augments tumour cell phagocytosis both in vitro and in vivo models.展开更多
Brucellosis,caused by Brucella,is one of the most common zoonosis.However,there is still no vaccine for human use.Although some live attenuated vaccines have been approved for animals,the protection effect is not idea...Brucellosis,caused by Brucella,is one of the most common zoonosis.However,there is still no vaccine for human use.Although some live attenuated vaccines have been approved for animals,the protection effect is not ideal.In this study,we developed a dual-antigen nanoconjugate vaccine containing both polysaccharide and protein antigens against Brucella.First,the antigenic polysaccharide was covalently coupled to the outer membrane protein Omp19 using protein glycan coupling technology,and then it was successfully loaded on a nano-carrier through the SpyTag/SpyCatcher system.After confirming the efficient immune activation and safety performance of the dual-antigen nanoconjugate vaccine,the potent serum antibody response against the two antigens and remarkable protective effect in non-lethal and lethal Brucella infection models were further demonstrated through different routes of administration.These results indicated that the dual-antigen nanoconjugate vaccine enhanced both T helper 1 cell(Th1)and Th2 immune responses and protected mice from Brucella infection.Furthermore,we found that this protective effect was maintained for at least 18 weeks.To our knowledge,this is the first Brucella vaccine bearing diverse antigens,including a protein and polysaccharide,on a single nanoparticle.Thus,we also present an attractive technology for co-delivery of different types of antigens using a strategy applicable to other vaccines against infectious diseases.展开更多
基金supported by the Shanghai Science and Technology Committee (Grant Nos. 20DZ2201900 to Y.Y. and 23ZR1432500 to W.P.)National Natural Science Foundation of China (Grant Nos. 82072602 to Y.Y.+4 种基金91853121, 21977066, and 22177069 to W.P.)Innovation Foundation of Translational Medicine of Shanghai Jiao Tong University School of Medicine(Grant No. TM202001 to Y.Y.)Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education&Shanghai (Grant No. CCTS-2022202 to Y.Y.)Shanghai Pilot Program for Basic Research-Shanghai Jiao Tong University (Grant No. 21TQ1400210 to W.P.)Medical-Engineering Interdisciplinary Research Foundation of Shanghai Jiao Tong University (Grant No. YG2022ZD001 to W.P.)
文摘Malignant tumors are complex structures composed of cancer cells and tumor microenvironmental cells.In this complex structure,cells cross-talk and interact,thus jointly promoting cancer development and metastasis.Recently,immunoregulatory molecule-based cancer immunotherapy has greatly improved treatment efficacy for solid cancers,thus enabling some patients to achieve persistent responses or cure.However,owing to the development of drug-resistance and the low response rate,immunotherapy against the available targets PD-1/PD-L1 or CTLA-4 has limited benefits.Although combination therapies have been proposed to enhance the response rate,severe adverse effects are observed.Thus,alternative immune checkpoints must be identified.The SIGLECs are a family of immunoregulatory receptors(known as glyco-immune checkpoints)discovered in recent years.This review systematically describes the molecular characteristics of the SIGLECs,and discusses recent progress in areas including synthetic ligands,monoclonal antibody inhibitors,and Chimeric antigen receptor T(CAR-T)cells,with a focus on available strategies for blocking the sialylated glycan-SIGLEC axis.Targeting glyco-immune checkpoints can expand the scope of immune checkpoints and provide multiple options for new drug development.
基金the support from the National Natural Science Foundation of China (Nos.21974067, 22274073, 81971373 and 82001535)the National Key Research and Development Program of China (No.2018YFC1004700)+1 种基金Fundamental Research Funds for the Central Universities (Nos.020514380309,021414380502 and 2022300324)the State Key Laboratory of Analytical Chemistry for Life Science (Nos.5431ZZXM2305 and 5431ZZXM2204)。
文摘Spermatogenesis, maturation, capacitation and fertilization are precisely regulated by glycosylation. However, the relationship between altered glycosylation patterns and the onset and development of reproductive disorders is unclear, mainly limited by the lack of in situ imaging techniques for spermatozoa glycosylation. We developed an efficient and highly specific spermatozoa glycan imaging technique based on the robust chemoselective labeling of sialic acid(Sia) and N-acetyl-D-galactosamine(Gal/GalNAc). We further proposed a “tandem glycan chemoselective labeling” strategy to achieve simultaneous imaging of two types of glycans on spermatozoa. We applied the developed method to the spermatozoa from oligozoospermic patients and diabetic mice and found that these spermatozoa showed higher levels of Sia and Gal/Gal NAc expression than the normal groups. Moreover, spermatozoa from diabetic mice showed a severe decrease in number, viability, and forward motility, suggesting that in vivo glucose metabolism disorders may lead to an elevated level of spermatozoa glycosylation and have a correlation with the development of oligoasthenotspermia. Our work provides a research tool to reveal the relationship between glycosylation modification and spermatozoa quality, and a promising clue for the development of glycan-based reproductive markers.
基金supported by the National Natural Science Foundation of China(91853120)the National Major Scientific and Technological Special Project of China(2018ZX09711001-013 and 2018ZX09711001-005)+2 种基金the National Key Research and Development Program of China(2018YFE0111400 and 2016YFD0500300)the State Key Laboratory of Bioactive Substance and Function of Natural Medicines,Institute of Materia Medica,the Chinese Academy of Medical Sciences and Peking Union Medical College,the NIH Research Project Grant Program(R01 EB025892)the CRP-ICGEB Research Grant 2019(CRP/CHN19-02)。
文摘The pandemic of the severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)has caused a high number of deaths in the world.To combat it,it is necessary to develop a better understanding of how the virus infects host cells.Infection normally starts with the attachment of the virus to cell-surface glycans like heparan sulfate(HS)and sialic acid-containing glycolipids/glycoproteins.In this study,we examined and compared the binding of the subunits and spike(S)proteins of SARS-CoV-2,SARS-Co V,and Middle East respiratory disease(MERS)-Co V to these glycans.Our results revealed that the S proteins and subunits can bind to HS in a sulfation-dependent manner and no binding with sialic acid residues was detected.Overall,this work suggests that HS binding may be a general mechanism for the attachment of these coronaviruses to host cells,and supports the potential importance of HS in infection and in the development of antiviral agents against these viruses.
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(NRF-RS-2023-00275307)。
文摘Background Optimal gut health is important to maximize growth performance and feed efficiency in broiler chickens.A total of 1,365 one-day-old male Ross 308 broiler chickens were randomly divided into 5 treatments groups with 21 replicates,13 birds per replicate.The present research investigated effects of microbial muramidase or a precision glycan alone or in combination on growth performance,apparent total tract digestibility,total blood carotenoid content,intestinal villus length,meat quality and gut microbiota in broiler chickens.Treatments included:NC:negative control(basal diet group);PC:positive control(basal diet+0.02%probiotics);MR:basal diet+0.035%microbial muramidase;PG:basal diet+0.1%precision glycan;and MRPG:basal diet+0.025%MR+0.1%PG,respectively.Results MRPG group increased the body weight gain and feed intake(P<0.05)compared with NC group.Moreover,it significantly increased total serum carotenoid(P<0.05)and MRPG altered the microbial diversity in ileum contents.The MRPG treatment group increased the abundance of the phylum Firmicutes,and family Lachnospiraceae,Ruminococcaceae,Oscillospiraceae,Lactobacillaceae,Peptostreptococcaceae and decreased the abundance of the phylum Campilobacterota,Bacteroidota and family Bacteroidaceae.Compared with the NC group,the chickens fed MRPG showed significantly increased in duodenum villus length at end the trial.Conclusion In this study,overall results showed that the synergetic effects of MR and PG showed enhancing growth performance,total serum carotenoid level and altering gut microbiota composition of broilers.The current research indicates that co-supplementation of MR and PG in broiler diets enhances intestinal health,consequently leading to an increased broiler production.
基金Funding was provided by the National Natural Science Foundation of China,82122017:Xiangjia Zhu,81970780:Yi Lu,81870642:Xiangjia Zhu,81670835:Yi LuScience and Technology Innovation Plan of Shanghai Science and Technology Commission,19441900700:Xiangjia Zhu,21S31904900:Xiangjia Zhu+3 种基金Shanghai Hospital Development Center,SHDC12019X08:Xiangjia ZhuShanghai Shenkang Hospital Development Center,SHDC2020CR4078:Xiangjia ZhuDouble-E Plan of Eye&ENT Hospital,SYA202006:Xiangjia ZhuShanghai Municipal Key Clinical Specialty Program,shslczdzk01901:Xiangjia Zhu.
文摘High myopia has long been highly prevalent worldwide with a largely yet unexplained genetic contribution.To identify novel susceptibility genes for axial length(AL)in highly myopic eyes,a genome-wide association study(GWAS)was performed using the genomic dataset of 350 deep whole-genome sequencing data from highly myopic patients.Top single nucleotide polymorphisms(SNPs)were functionally annotated.Immunofluorescence staining,quantitative polymerase chain reaction,and western blot were performed using neural retina of form-deprived myopic mice.Enrichment analyses were further performed.We identified the four top SNPs and found that ADAM Metallopeptidase With Thrombospondin Type 1 Motif 16(ADAMTS16)and Phosphatidylinositol Glycan Anchor Biosynthesis Class Z(PIGZ)had the potential of clinical signifi-cance.Animal experiments confirmed that PIGZ expression could be observed and showed higher expression level in form-deprived mice,especially in the ganglion cell layer.The messenger RNA(mRNA)levels of both ADAMTS16 and PIGZ were significantly higher in the neural retina of form-deprived eyes(p=0.005 and 0.007 respectively),and both proteins showed significantly upregulated expression in the neural retina of deprived eyes(p=0.004 and 0.042,respectively).Enrichment analysis revealed a significant role of cellular adhesion and signal transduction in AL,and also several AL-related pathways including circadian entrainment and inflammatory mediator regulation of transient receptor potential channels were proposed.In conclusion,the current study identified four novel SNPs associated with AL in highly myopic eyes and confirmed that the expression of ADAMTS16 and PIGZ was significantly upregulated in neural retina of deprived eyes.Enrichment analyses provided novel insight into the etiology of high myopia and opened avenues for future research interest.
基金Supported by the Russian Science Foundation,No.20-65-47026。
文摘Helicobacter pylori(H.pylori)is generally regarded as a human pathogen and a class 1 carcinogen,etiologically related to gastric and duodenal ulcers,gastric cancer,and mucosa-associated lymphoid tissue lymphoma.However,H.pylori can also be regarded as a commensal symbiont.Unlike other pathogenic/opportunistic bacteria,H.pylori colonization in infancy is facilitated by T helper type 2 immunity and leads to the development of immune tolerance.Fucosylated gastric mucin glycans,which are an important part of the innate and adaptive immune system,mediate the adhesion of H.pylori to the surface of the gastric epithelium,contributing to successful colonization.H.pylori may have beneficial effects on the host by regulating gastrointestinal(GI)microbiota and protecting against some allergic and autoimmune disorders and inflammatory bowel disease.The potential protective role against inflammatory bowel disease may be related to both modulation of the gut microbiota and the immunomodulatory properties of H.pylori.The inverse association between H.pylori and some potentially proinflammatory and/or procarcinogenic bacteria may suggest it regulates the GI microbiota.Eradication of H.pylori can cause various adverse effects and alter the GI microbiota,leading to short-term or long-term dysbiosis.Overall,studies have shown that gastric Actinobacteria decrease after H.pylori eradication,Proteobacteria increase during short-term follow-up and then return to baseline levels,and Enterobacteriaceae and Enterococcus increase in the short-term and interim follow-up.Various gastric mucosal bacteria(Actinomyces,Granulicatella,Parvimonas,Peptostreptococcus,Prevotella,Rothia,Streptococcus,Rhodococcus,and Lactobacillus)may contribute to precancerous gastric lesions and cancer itself after H.pylori eradication.H.pylori eradication can also lead to dysbiosis of the gut microbiota,with increased Proteobacteria and decreased Bacteroidetes and Actinobacteria.The increase in gut Proteobacteria may contribute to adverse effects during and after er
基金supported by the Natural Science Foundation of China(31271837 and 31471704)
文摘In this paper we investigated the stability of konjac glucomnnan(KGM) chain hydrogen networks based on the quantum spin model. Dissipative particle dynamics method was applied in the structure simulation of KGM. The results reveled that acetyl residues of KGM were bonded with water molecules in aqueous solutions. Increasing the hydrogen bond formation decreases the energy in acetyl system. The expect-valuation of the thermal state with respect to the Hamiltonian is negative. Hence, the total energy of konjac glucomnnan chain with the acetyl groups decreases, which indicates the increasing stability of konjac glucomnnan chain. Our approach could provide a new insight into the investigation on the stability of konjac glucomnnan chain.
基金a National Research Foundation of Korea(NRF)grant the Korean government(MSIT)(Nos.2020R1A5A1018052,2017M3A7B8061942,2019R1A2C1006018,2021R1A4A5032463 and 2021M3H4A4079629,Republic of Korea)。
文摘Interaction between tumour cells and macrophages enables cancer cells to evade immune detection and clearance by interfering with macrophage phagocytosis.The anti-phagocytic signals regulated by anti-phagocytic proteins are termed"don't eat me"signals;these signals include sialic acidbinding immunoglobulin-type lectin-10(Siglec-10)and the recently revealed CD24 immune checkpoint(ICP).In this study,we demonstrate that targeting a specific glycan on CD24 exhibits the potential to inhibit ICP.Sambucus nigra agglutinin(SNA),a sialic acid-binding lectin,was employed to block CD24 and to enhance phagocytosis in melanoma tumours.In addition,we prepared SNA-conjugated hollow gold-iron oxide nanoparticles for photothermal therapy of tumours.Our findings show that the combination treatment of SNA-conjugated photothermal nanoparticles and near-infrared exposure successfully augments tumour cell phagocytosis both in vitro and in vivo models.
基金supported by the National Key Research and Development Program of China(2021YFC2102100)the National Natural Science Foundation of China(U20A20361,32271507,81930122,and 82171819)the Beijing Postdoctoral Research Foundation(2021-ZZ-035)。
文摘Brucellosis,caused by Brucella,is one of the most common zoonosis.However,there is still no vaccine for human use.Although some live attenuated vaccines have been approved for animals,the protection effect is not ideal.In this study,we developed a dual-antigen nanoconjugate vaccine containing both polysaccharide and protein antigens against Brucella.First,the antigenic polysaccharide was covalently coupled to the outer membrane protein Omp19 using protein glycan coupling technology,and then it was successfully loaded on a nano-carrier through the SpyTag/SpyCatcher system.After confirming the efficient immune activation and safety performance of the dual-antigen nanoconjugate vaccine,the potent serum antibody response against the two antigens and remarkable protective effect in non-lethal and lethal Brucella infection models were further demonstrated through different routes of administration.These results indicated that the dual-antigen nanoconjugate vaccine enhanced both T helper 1 cell(Th1)and Th2 immune responses and protected mice from Brucella infection.Furthermore,we found that this protective effect was maintained for at least 18 weeks.To our knowledge,this is the first Brucella vaccine bearing diverse antigens,including a protein and polysaccharide,on a single nanoparticle.Thus,we also present an attractive technology for co-delivery of different types of antigens using a strategy applicable to other vaccines against infectious diseases.