期刊文献+
共找到807篇文章
< 1 2 41 >
每页显示 20 50 100
Neural Network Based Terminal Sliding Mode Control for WMRs Affected by an Augmented Ground Friction With Slippage Effect 被引量:8
1
作者 Ming Yue Linjiu Wang Teng Ma 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第3期498-506,共9页
Wheeled mobile robots(WMRs) encounter unavoidable slippage especially on the low adhesion terrain such that the robots stability and accuracy are reduced greatly.To overcome this drawback,this article presents a neura... Wheeled mobile robots(WMRs) encounter unavoidable slippage especially on the low adhesion terrain such that the robots stability and accuracy are reduced greatly.To overcome this drawback,this article presents a neural network(NN) based terminal sliding mode control(TSMC) for WMRs where an augmented ground friction model is reported by which the uncertain friction can be estimated and compensated according to the required performance.In contrast to the existing friction models,the developed augmented ground friction model corresponds to actual fact because not only the effects associated with the mobile platform velocity but also the slippage related to the wheel slip rate are concerned simultaneously.Besides,the presented control approach can combine the merits of both TSMC and radial basis function(RBF) neural networks techniques,thereby providing numerous excellent performances for the closed-loop system,such as finite time convergence and faster friction estimation property.Simulation results validate the proposed friction model and robustness of controller;these research results will improve the autonomy and intelligence of WMRs,particularly when the mobile platform suffers from the sophisticated unstructured environment. 展开更多
关键词 Ground friction radial basis function(rbf) neural network(NN) slippage effect terminal sliding mode control(TSMC) wheeled mobile robot(WMR)
下载PDF
HUID:DBN-Based Fingerprint Localization and Tracking System with Hybrid UWB and IMU 被引量:3
2
作者 Junchang Sun Rongyan Gu +4 位作者 Shiyin Li Shuai Ma Hongmei Wang Zongyan Li Weizhou Feng 《China Communications》 SCIE CSCD 2023年第2期139-154,共16页
High-precision localization technology is attracting widespread attention in harsh indoor environments.In this paper,we present a fingerprint localization and tracking system to estimate the locations of the tag based... High-precision localization technology is attracting widespread attention in harsh indoor environments.In this paper,we present a fingerprint localization and tracking system to estimate the locations of the tag based on a deep belief network(DBN).In this system,we propose using coefficients as fingerprints to combine the ultra-wideband(UWB)and inertial measurement unit(IMU)estimation linearly,termed as a HUID system.In particular,the fingerprints are trained by a DBN and estimated by a radial basis function(RBF).However,UWB-based estimation via a trilateral method is severely affected by the non-line-of-sight(NLoS)problem,which limits the localization precision.To tackle this problem,we adopt the random forest classifier to identify line-of-sight(LoS)and NLoS conditions.Then,we adopt the random forest regressor to mitigate ranging errors based on the identification results for improving UWB localization precision.The experimental results show that the mean square error(MSE)of the localization error for the proposed HUID system reduces by 12.96%,50.16%,and 64.92%compared with that of the existing extended Kalman filter(EKF),single UWB,and single IMU estimation methods,respectively. 展开更多
关键词 Ultra-wideband(UWB) inertial measurement unit(IMU) fingerprints positioning NLoS identification estimated errors mitigation deep belief network(DBN) radial basis function(rbf)
下载PDF
Modeling and optimum operating conditions for FCCU using artificial neural network 被引量:5
3
作者 李全善 李大字 曹柳林 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第4期1342-1349,共8页
A self-organizing radial basis function(RBF) neural network(SODM-RBFNN) was presented for predicting the production yields and operating optimization. Gradient descent algorithm was used to optimize the widths of RBF ... A self-organizing radial basis function(RBF) neural network(SODM-RBFNN) was presented for predicting the production yields and operating optimization. Gradient descent algorithm was used to optimize the widths of RBF neural network with the initial parameters obtained by k-means learning method. During the iteration procedure of the algorithm, the centers of the neural network were optimized by using the gradient method with these optimized width values. The computational efficiency was maintained by using the multi-threading technique. SODM-RBFNN consists of two RBF neural network models: one is a running model used to predict the product yields of fluid catalytic cracking unit(FCCU) and optimize its operating parameters; the other is a learning model applied to construct or correct a RBF neural network. The running model can be updated by the learning model according to an accuracy criterion. The simulation results of a five-lump kinetic model exhibit its accuracy and generalization capabilities, and practical application in FCCU illustrates its effectiveness. 展开更多
关键词 radial basis functionrbf neural network self-organizing gradient descent double-model fluid catalytic cracking unit(FCCU)
下载PDF
Numerical prediction of effective wake field for a submarine based on a hybrid approach and an RBF interpolation 被引量:4
4
作者 饶志强 杨晨俊 《Journal of Hydrodynamics》 SCIE EI CSCD 2017年第4期691-701,共11页
A hybrid approach coupled with a surface panel method for the propeller and a Reynolds averaged Navier-Stokes(RANS) model for the hull with the propeller body forces are presented for predicting the self-propulsion ... A hybrid approach coupled with a surface panel method for the propeller and a Reynolds averaged Navier-Stokes(RANS) model for the hull with the propeller body forces are presented for predicting the self-propulsion performance and the effective wake field of underwater vehicles. To achieve a high accuracy and simplicity, a radial basis function(RBF) based approach is proposed for mapping the force field from the blade surface panels to the RANS model. The effective wake field is evaluated in two ways, i.e., by extrapolation from the flat planes upstream of the propeller disk, and by direct computation in a curved surface upstream of and parallel to the blade leading edges. The hull-propeller system of a real propeller geometry is further simulated with the sliding mesh model to numerically verify the hybrid approach. Numerical simulations are conducted for the fully appended SUBOFF submarine model. The high accuracy of the RBF-based interpolation scheme is confirmed, and the effective wake fraction predicted by the hybrid approach is found consistent with that obtained by the sliding mesh model. The effective wake fractions predicted by the two methods are, respectively, 4.6% and 3% larger than the nominal one. 展开更多
关键词 Submarine effective wake panel method Reynolds averaged Navier-Stokes(RANS) radial basis functionrbf
原文传递
PARAMETERS DETERMINATION METHOD OF PHASE-SPACE RECONSTRUCTION BASED ON DIFFERENTIAL ENTROPY RATIO AND RBF NEURAL NETWORK 被引量:4
5
作者 Zhang Shuqing Hu Yongtao +1 位作者 Bao Hongyan Li Xinxin 《Journal of Electronics(China)》 2014年第1期61-67,共7页
Phase space reconstruction is the first step of recognizing the chaotic time series.On the basis of differential entropy ratio method,the embedding dimension opt m and time delay t are optimal for the state space reco... Phase space reconstruction is the first step of recognizing the chaotic time series.On the basis of differential entropy ratio method,the embedding dimension opt m and time delay t are optimal for the state space reconstruction could be determined.But they are not the optimal parameters accepted for prediction.This study proposes an improved method based on the differential entropy ratio and Radial Basis Function(RBF)neural network to estimate the embedding dimension m and the time delay t,which have both optimal characteristics of the state space reconstruction and the prediction.Simulating experiments of Lorenz system and Doffing system show that the original phase space could be reconstructed from the time series effectively,and both the prediction accuracy and prediction length are improved greatly. 展开更多
关键词 Phase-space reconstruction Chaotic time series Differential entropy ratio Embedding dimension Time delay Radial Basis function(rbf) neural network
下载PDF
Boiler flame detection algorithm based on PSO-RBF network
6
作者 吴进 GAO Yaqiong +1 位作者 YANG Ling ZHAO Bo 《High Technology Letters》 EI CAS 2023年第1期68-77,共10页
As the main production tool in the industrial environment,large boilers play a vital role in the conversion and utilization of energy.Therefore,the furnace flame detection technology for boilers has always been a hot ... As the main production tool in the industrial environment,large boilers play a vital role in the conversion and utilization of energy.Therefore,the furnace flame detection technology for boilers has always been a hot issue in the field of industrial automation and intelligence.In order to further improve the timeliness and accuracy of the flame detection network,a radial basis function(RBF)flame detection network based on particle swarm optimization(PSO)algorithm is proposed.First,the proposed algorithm initializes the speed and position parameters of the particles.Then,the parameters of the particles are mapped to the RBF flame detection network.Finally,the algorithm is iteratively updated to obtain the global optimal solution.The PSO-RBF flame detection algorithm adopts a flame sample collection method similar to back propagation(BP)flame detection algorithm,and further improves the collection efficiency.The experimental results show that the PSO-RBF flame detection network has good accuracy and faster convergence speed in the given data samples.In the flame data samples,the detection accuracy of the PSO-RBF flame detection algorithm reaches 90.5%. 展开更多
关键词 radial basis function(rbf) particle swarm optimization(PSO) flame detection
下载PDF
Recovery of Collided RFID Tags With Frequency Drift on Physical Layer 被引量:3
7
作者 Junzhi Li Haifeng Wu Yu Zeng 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2020年第6期1593-1603,共11页
In a passive ultra-high frequency(UHF)radio frequency identification(RFID)system,the recovery of collided tag signals on a physical layer can enhance identification efficiency.However,frequency drift is very common in... In a passive ultra-high frequency(UHF)radio frequency identification(RFID)system,the recovery of collided tag signals on a physical layer can enhance identification efficiency.However,frequency drift is very common in UHF RFID systems,and will have an influence on the recovery on the physical layer.To address the problem of recovery with the frequency drift,this paper adopts a radial basis function(RBF)network to separate the collision signals,and decode the signals via FM0 to recovery collided RFID tags.Numerical results show that the method in this paper has better performance of symbol error rate(SER)and separation efficiency compared to conventional methods when frequency drift occurs. 展开更多
关键词 Frequency drift radial basis function(rbf) radio frequency identification(RFID) separation efficiency tag collision
下载PDF
Neural Network Prediction Model for Ship Hydraulic Pressure Signal Under Wind Wave Background 被引量:1
8
作者 李松 张春华 石敏 《Journal of Shanghai Jiaotong university(Science)》 EI 2015年第2期224-227,共4页
The ship hydraulic pressure signal is one of the important characters for the target detection and recognition. At present, most of the researches on the detection focus on the ways in the time domain. The ways are us... The ship hydraulic pressure signal is one of the important characters for the target detection and recognition. At present, most of the researches on the detection focus on the ways in the time domain. The ways are usually invalid in the large wind wave background. In order to solve the problem efficiently, we present an effectual way to detect the ship using the ship hydraulic pressure signal. Firstly, the signature in the proposed method is decomposed by wavelet-transform technique and reconstructed at the low-frequency region. Then,a predictive model is set up by using the radial basis function(RBF) neural network. Finally, the signature predictive error is regarded as the testing signal which can be used to judge whether the target exists or does not.The practical result shows that the method can improve the signal to noise ratio(SNR) obviously. 展开更多
关键词 hydrodynamic pressure signal wavelet-transform radial basis function(rbf) neural network signal to noise ratio(SNR) predictive e
原文传递
Detection of Cholangiocarcinoma with Fourier Transform Infrared Spectroscopy and Radial Basis Function Neural Network Classification
9
作者 WU Min CUI Long +1 位作者 LING Xiaofeng XU Zhi 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2016年第4期561-564,共4页
The aim of this study was to explore the possibility of applying Fourier transform infrared(FTIR) spec- troscopy as a medical diagnostic toot based on a neural network classifier for detecting and classifying cholan... The aim of this study was to explore the possibility of applying Fourier transform infrared(FTIR) spec- troscopy as a medical diagnostic toot based on a neural network classifier for detecting and classifying cholangiocar- cinoma. A total of 51 cases of bile duct tissues were obtained and later characterized by FTIR spectroscopy prior to pathological diagnosis. The criteria for classification included 30 parameters for each FTIR spectra, including peak position(P), intensity(/) and full width at half-maximum(FWHM), were measured, calculated and subsequently com- pared against the normal and cancer groups. The FTIR spectra were classified by the radial basis function(RBF) net- work model. For establishing the RBF, 23 cases were used to train the RBF classifier, and 28 cases were applied to validate the model. Using the RFB model, nine parameters were observed to be pronouncedly different between can- cerous and normal tissue, including I1640, I1550, 11460,/1400, I1250, I1120,/10g0, Ii040 and P1040. In the RBF training classi- fication, the accuracy, sensitivity, and specificity of diagnosis were 82.6%, 80.0%, and 84.6%, respectively. While validating the classification, the accuracy, sensitivity, and specificity of diagnosis were 78.6%, 75.0%, and 81.2%, respectively. The results suggest that FTIR spectroscopy combined with neural network classifier could be applied as a medical diagnostic tool in cholangiocarcinoma diagnosis. 展开更多
关键词 CHOLANGIOCARCINOMA Fourier transform infrared(FTIR) spectroscopy Neural network Radial basis functionrbf network model
原文传递
Softw are Maintainability Prediction with UML Class Diagram
10
作者 刘丽 朱小冬 郝学良 《Journal of Donghua University(English Edition)》 EI CAS 2015年第1期157-161,共5页
Software system can be classified into many function modules from the perspective of user. Unified modeling language( UML) class diagram of each function module was extracted,and design characteristic metrics which in... Software system can be classified into many function modules from the perspective of user. Unified modeling language( UML) class diagram of each function module was extracted,and design characteristic metrics which influenced software maintainability were selected based on UML class diagram.Choosing metrics of UML class diagram as predictors,and mean maintenance time of function module was regarded as software maintainability parameter. Software maintainability models were built by using back propagation( BP) neural network and radial basis function( RBF) neural network, respectively and were simulated by MATLAB. In order to evaluate the performance of models,the training results were analyzed and compared with leaveone-out cross-validation and model performance evaluation criterion. The result indicated that RBF arithmetic was superior to BP arithmetic in predicting software maintainability. 展开更多
关键词 unified modeling language(UML) class diagram software maintainability back propagation(BP) neural network radial basis function(rbf) neural network
下载PDF
Fast Individual Facial Animation Framework Based on Motion Capture Data
11
作者 张满囤 葛新杰 +3 位作者 刘爽 肖智东 游理华 张建军 《Journal of Donghua University(English Edition)》 EI CAS 2014年第3期256-261,共6页
Based upon motion capture,a semi-automatic technique for fast facial animation was implemented. While capturing the facial expressions from a performer,a camera was used to record her /his front face as a texture map.... Based upon motion capture,a semi-automatic technique for fast facial animation was implemented. While capturing the facial expressions from a performer,a camera was used to record her /his front face as a texture map. The radial basis function( RBF) technique was utilized to deform a generic facial model and the texture was remapped to generate a personalized face.Partitioning the personalized face into three regions and using the captured facial expression data,the RBF and Laplacian operator,and mean-value coordinates were implemented to deform each region respectively. With shape blending,the three regions were combined together to construct the final face model. Our results show that the technique is efficient in generating realistic facial animation. 展开更多
关键词 motion capture facial animation radial basis function(rbf) facial expression
下载PDF
Solving PDEs with a Hybrid Radial Basis Function:Power-Generalized Multiquadric Kernel
12
作者 Cem Berk Senel Jeroen van Beeck Atakan Altinkaynak 《Advances in Applied Mathematics and Mechanics》 SCIE 2022年第5期1161-1180,共20页
Radial Basis Function(RBF)kernels are key functional forms for advanced solutions of higher-order partial differential equations(PDEs).In the present study,a hybrid kernel was developed for meshless solutions of PDEs ... Radial Basis Function(RBF)kernels are key functional forms for advanced solutions of higher-order partial differential equations(PDEs).In the present study,a hybrid kernel was developed for meshless solutions of PDEs widely seen in several engineering problems.This kernel,Power-Generalized Multiquadric-Power-GMQ,was built up by vanishing the dependence of e,which is significant since its selection induces severe problems regarding numerical instabilities and convergence issues.Another drawback of e-dependency is that the optimal e value does not exist in perpetuity.We present the Power-GMQ kernel which combines the advantages of Radial Power and Generalized Multiquadric RBFs in a generic formulation.Power-GMQ RBF was tested in higher-order PDEs with particular boundary conditions and different domains.RBF-Finite Difference(RBF-FD)discretization was also implemented to investigate the characteristics of the proposed RBF.Numerical results revealed that our proposed kernel makes similar or better estimations as against to the Gaussian and Multiquadric kernels with a mild increase in computational cost.Gauss-QR method may achieve better accuracy in some cases with considerably higher computational cost.By using Power-GMQ RBF,the dependency of solution on e was also substantially relaxed and consistent error behavior were obtained regardless of the selected e accompanied. 展开更多
关键词 Meshfree collocation methods Radial Basis function(rbf) partial differential equations(PDEs)
原文传递
A Model to Predict Rolling Force of Finishing Stands with RBF Neural Networks
13
作者 应宇圣 王景成 陈春召 《Journal of Shanghai Jiaotong university(Science)》 EI 2005年第3期256-259,共4页
In view of intrinsic imperfection of traditional models of rolling force, in ord er to improve the prediction accuracy of rolling force, a new method combining radial basis function(RBF) neural networks with tradition... In view of intrinsic imperfection of traditional models of rolling force, in ord er to improve the prediction accuracy of rolling force, a new method combining radial basis function(RBF) neural networks with traditional models to predict rolling f orce was proposed. The off-line simulation indicates that the predicted results are much more accurate than that with traditional models. 展开更多
关键词 radial basis functionrbf neural networks prediction of rolling force finishing rolling
下载PDF
Multi-objective Function Optimization for Environmental Control of a Greenhouse Based on a RBF and NSGA-Ⅱ
14
作者 Zhou Xiu-li Liu Ming-wei +3 位作者 Wang Ling Xu Xiao-chuan Chen Gang Wang De-fu 《Journal of Northeast Agricultural University(English Edition)》 CAS 2021年第1期75-89,共15页
To better meet the needs of crop growth and achieve energy savings and efficiency enhancements,constructing a reliable environmental model to optimize greenhouse decision parameters is an important problem to be solve... To better meet the needs of crop growth and achieve energy savings and efficiency enhancements,constructing a reliable environmental model to optimize greenhouse decision parameters is an important problem to be solved.In this work,a radial-basis function(RBF)neural network was used to mine the potential changes of a greenhouse environment,a temperature error model was established,a multi-objective optimization function of energy consumption was constructed and the corresponding decision parameters were optimized by using a non-dominated sorting genetic algorithm with an elite strategy(NSGA-Ⅱ).The simulation results showed that RBF could clarify the nonlinear relationship among the greenhouse environment variables and decision parameters and the greenhouse temperature.The NSGA-Ⅱ could well search for the Pareto solution for the objective functions.The experimental results showed that after 40 min of combined control of sunshades and sprays,the temperature was reduced from 31℃to 25℃,and the power consumption was 0.5 MJ.Compared with tire three days of July 24,July 25 and July 26,2017,the energy consumption of the controlled production greenhouse was reduced by 37.5%,9.1%and 28.5%,respectively. 展开更多
关键词 greenhouse temperature multi-objective optimization radial-basis function(rbf) non-dominated sorting genetic algorithm with an elite strategy(NSGA-Ⅱ)
下载PDF
RBF神经网络的结构动态优化设计 被引量:121
15
作者 乔俊飞 韩红桂 《自动化学报》 EI CSCD 北大核心 2010年第6期865-872,共8页
针对径向基函数(Radial basis function,RBF)神经网络的结构设计问题,提出一种结构动态优化设计方法.利用敏感度法(Sensitivity analysis,SA)分析隐含层神经元的输出加权值对神经网络输出的影响,以此判断增加或删除RBF神经网络隐含层中... 针对径向基函数(Radial basis function,RBF)神经网络的结构设计问题,提出一种结构动态优化设计方法.利用敏感度法(Sensitivity analysis,SA)分析隐含层神经元的输出加权值对神经网络输出的影响,以此判断增加或删除RBF神经网络隐含层中的神经元,解决了RBF神经网络结构过大或过小的问题,并给出了神经网络结构动态变化过程中收敛性证明;利用梯度下降的参数修正算法保证了最终RBF网络的精度,实现了神经网络的结构和参数自校正.通过对非线性函数的逼近与污水处理过程中关键参数的建模结果,证明了该动态RBF具有良好的自适应能力和逼近能力,尤其是在泛化能力、最终网络结构等方面较之最小资源神经网络(Minimal resource allocation networks,MRAN)与增长和修剪RBF神经网络(Generalized growing and pruning radial basis function,GGAP-RBF)有较大提高. 展开更多
关键词 径向基函数神经网络 动态设计 动态结构rbf 化学需氧量建模
下载PDF
风电场输出功率的组合预测模型 被引量:105
16
作者 刘纯 范高锋 +1 位作者 王伟胜 戴慧珠 《电网技术》 EI CSCD 北大核心 2009年第13期74-79,共6页
风电场输出功率预测对于接入大量风电的电力系统运行具有重要意义。作者利用BP神经网络、径向基函数神经网络和支持向量机进行风电功率预测,提出了风电场输出功率的组合预测模型。采用3种方法确定权重,即等权重平均法、协方差优选组合... 风电场输出功率预测对于接入大量风电的电力系统运行具有重要意义。作者利用BP神经网络、径向基函数神经网络和支持向量机进行风电功率预测,提出了风电场输出功率的组合预测模型。采用3种方法确定权重,即等权重平均法、协方差优选组合预测法和时变权系数组合预测法。研究结果表明,不同方法的预测精度不同,整体预测精度高的方法在个别预测点也可能误差较大,组合预测模型能有效减少各预测点较大误差的出现,有利于提高预测精度。 展开更多
关键词 风电场 功率预测 BP神经网络 径向基函数神经网络 支持向量机
下载PDF
基于RBF神经网络分位数回归的电力负荷概率密度预测方法 被引量:100
17
作者 何耀耀 许启发 +1 位作者 杨善林 余本功 《中国电机工程学报》 EI CSCD 北大核心 2013年第1期93-98,共6页
针对电力系统短期负荷预测问题,在现有的组合预测和概率性区间预测的基础上,提出了基于RBF神经网络分位数回归的概率密度预测方法,得出未来一天中任意时期负荷的概率密度函数,可以得到比点预测和区间预测更多的有用信息,实现了对未来负... 针对电力系统短期负荷预测问题,在现有的组合预测和概率性区间预测的基础上,提出了基于RBF神经网络分位数回归的概率密度预测方法,得出未来一天中任意时期负荷的概率密度函数,可以得到比点预测和区间预测更多的有用信息,实现了对未来负荷完整概率分布的预测。中国某市实际数据的预测结果表明,提出的概率密度预测方法不仅能得出较为精确的点预测结果,而且能够获得短期负荷完整的概率密度函数预测结果。 展开更多
关键词 负荷预测 径向基函数 神经网络 分位数回归 概率密度函数
下载PDF
径向基函数(RBF)网络的研究及实现 被引量:51
18
作者 周俊武 孙传尧 王福利 《矿冶》 EI CAS 2001年第4期71-75,共5页
概述人工神经元网络的分类 ,详细分析了RBF网络的结构特点 ,给出了最近邻聚类学习算法的具体过程 ,并利用MATLAB编程语言将此算法编制成标准函数ZJWNNC。该算法是一种在线自适应聚类学习算法 ,不需要事先确定隐含层单元的个数。
关键词 过程控制 径向基函数 最近邻聚类算法 MATLAB语言 人工神经元网络
下载PDF
基于径向基神经网络和自适应神经模糊系统的电力短期负荷预测方法 被引量:71
19
作者 雷绍兰 孙才新 +2 位作者 周湶 张晓星 程其云 《中国电机工程学报》 EI CSCD 北大核心 2005年第22期78-82,共5页
针对实时电价对短期负荷的影响,建立了径向基(RBF)神经网络和自适应神经网络模糊系统(ANFIS)相结合的短期负荷预测模型。该模型利用RBF神经网络的非线性逼近能力对不考虑电价因素的预测日负荷进行了预测,并根据近期实时电价的变化,应用A... 针对实时电价对短期负荷的影响,建立了径向基(RBF)神经网络和自适应神经网络模糊系统(ANFIS)相结合的短期负荷预测模型。该模型利用RBF神经网络的非线性逼近能力对不考虑电价因素的预测日负荷进行了预测,并根据近期实时电价的变化,应用ANFIS系统对RBF神经网络的负荷预测结果进行修正,以使固定电价时代的预测方法在电价敏感环境下也能达到较好的预测精度,克服了神经网络在电力市场下进行负荷预测时存在的不足。某电网实际预测结果表明,该方法具有较好的预测效果。 展开更多
关键词 电力系统 短期负荷预测 实时电价 径向基神经网络 自适应神经模糊系统
下载PDF
超临界锅炉烟气脱硝喷氨量混结构–径向基函数神经网络最优控制 被引量:61
20
作者 周洪煜 张振华 +2 位作者 张军 张伟 赵乾 《中国电机工程学报》 EI CSCD 北大核心 2011年第5期108-113,共6页
喷氨量大小不仅影响超临界锅炉选择性催化还原(selective catalytic reduction,SCR)烟气脱硝装置的效率,过量喷氨也会导致下游空预器受热面的积灰、腐蚀和造成资源浪费、二次污染,且在变负荷时,传统PID控制方式很难实现最佳控制。通过... 喷氨量大小不仅影响超临界锅炉选择性催化还原(selective catalytic reduction,SCR)烟气脱硝装置的效率,过量喷氨也会导致下游空预器受热面的积灰、腐蚀和造成资源浪费、二次污染,且在变负荷时,传统PID控制方式很难实现最佳控制。通过引入混结构隐含层,改善传统RBF神经网络变工况控制时的非线性和扰动适应能力,设计了基于混结构RBF神经网络(MS-RBFNN)的喷氨流量最优控制系统,用MS-RBFNN综合学习当前主要相关状态参数,以SCR脱硝装置出口NOx排放量最小作为学习训练信号,实时并行计算出最优喷氨控制流量。实验结果表明,此优化方案相对传统PID控制,具有更好的NOx排放控制效果和变工况适应能力,同时节约了喷氨量。 展开更多
关键词 选择性催化还原 径向基函数神经网络 混结构 最优控制 烟气脱硝 超临界锅炉
下载PDF
上一页 1 2 41 下一页 到第
使用帮助 返回顶部