The classification of spatial characteristics and discharge modes of dielectric barrier discharge(DBD)are gaining increasing attention in industrial applications,especially in the field of surface treatment of materia...The classification of spatial characteristics and discharge modes of dielectric barrier discharge(DBD)are gaining increasing attention in industrial applications,especially in the field of surface treatment of materials.In this work,gray level histogram(GLH)and Fourier energy spectrum based on the digital image processing tech no logy are applied to investigate the spatial structure and discharge mode of mesh-plate DBD.The coefficient of variation(CV)is calculated to describe the uniformity of the discharge.The results show that the discharge mode of mesh-plate DBD changes from periodic discharge to filamentary discharge when the applied voltage increases from 11-15 kV.Moreover,a more regular spatial structure is obtained under lower applied voltages during the discharge process.It is also found that the apertures of mesh electrodes which are below 1 mm have smaller values of CV compared to plate electrodes,indicating more uniform discharge.Finally,polypropylene is treated by mesh-plate DBD for surface modification.The hydrophilicity is significantly improved as the water contact angle decreased by 64°,and the dyeing depth is also enhanced.展开更多
The separation of andalusite and quartz was investigated in the sodium oleate flotation system, and its mechanism was studied by solution chemical calculation, zeta-potential tests, Fourier transform infrared spectros...The separation of andalusite and quartz was investigated in the sodium oleate flotation system, and its mechanism was studied by solution chemical calculation, zeta-potential tests, Fourier transform infrared spectroscopic(FTIR), and X-ray photoelectron spectroscopic(XPS). The flotation tests results show that FeCl3·6H2O has a strong activation effect on andalusite and quartz and citric acid has a strong inhibitory effect on activated quartz, thus increasing the floatability difference between quartz and andalusite when the pulp p H is approximately 8. The FTIR, Zeta potential, and XPS analyses combined with the chemical calculation of flotation reagent solutions demonstrate that Fe forms hydroxide precipitates on the surface of andalusite and quartz and that oleate anions and metal ions adsorb onto the surface of the minerals. The elements Al and Fe can be chemically reacted. The anions in citric acid have different degrees of dissolution of Fe on the andalusite and quartz surfaces, thereby selectively eliminating the activation of the elemental Fe on andalusite and quartz and increasing the floatability of andalusite, leading to a better separation effect between andalusite and quartz.展开更多
基金financial support from the Joint Funds of National Natural Science Foundation of China(No.U1462105)
文摘The classification of spatial characteristics and discharge modes of dielectric barrier discharge(DBD)are gaining increasing attention in industrial applications,especially in the field of surface treatment of materials.In this work,gray level histogram(GLH)and Fourier energy spectrum based on the digital image processing tech no logy are applied to investigate the spatial structure and discharge mode of mesh-plate DBD.The coefficient of variation(CV)is calculated to describe the uniformity of the discharge.The results show that the discharge mode of mesh-plate DBD changes from periodic discharge to filamentary discharge when the applied voltage increases from 11-15 kV.Moreover,a more regular spatial structure is obtained under lower applied voltages during the discharge process.It is also found that the apertures of mesh electrodes which are below 1 mm have smaller values of CV compared to plate electrodes,indicating more uniform discharge.Finally,polypropylene is treated by mesh-plate DBD for surface modification.The hydrophilicity is significantly improved as the water contact angle decreased by 64°,and the dyeing depth is also enhanced.
基金financially supported by the State Key Laboratory of Mineral Processing of BGRIMM Technology Group, China (No.BGRIMM-KJSKL-2017-11)
文摘The separation of andalusite and quartz was investigated in the sodium oleate flotation system, and its mechanism was studied by solution chemical calculation, zeta-potential tests, Fourier transform infrared spectroscopic(FTIR), and X-ray photoelectron spectroscopic(XPS). The flotation tests results show that FeCl3·6H2O has a strong activation effect on andalusite and quartz and citric acid has a strong inhibitory effect on activated quartz, thus increasing the floatability difference between quartz and andalusite when the pulp p H is approximately 8. The FTIR, Zeta potential, and XPS analyses combined with the chemical calculation of flotation reagent solutions demonstrate that Fe forms hydroxide precipitates on the surface of andalusite and quartz and that oleate anions and metal ions adsorb onto the surface of the minerals. The elements Al and Fe can be chemically reacted. The anions in citric acid have different degrees of dissolution of Fe on the andalusite and quartz surfaces, thereby selectively eliminating the activation of the elemental Fe on andalusite and quartz and increasing the floatability of andalusite, leading to a better separation effect between andalusite and quartz.
文摘快速、准确定位振荡源是抑制电力系统强迫功率振荡的关键。为提高电力系统强迫振荡源定位精度和效率,该文提出一种基于耗散能量谱的电力系统强迫振荡源频域定位方法。该方法首先将电力系统广域测量信息进行短时傅里叶变换(short-time Fourier transform,STFT);然后,根据信号的时—频域特性,推导出时域耗散能量与时频域耗散能量间的关系,在此基础上,构建出频域耗散能量谱,论证了时域耗散能量与频域耗散能量谱的等价性;进而根据频域耗散能量谱辨识系统强迫振荡频率、定位强迫振荡源;最后,将所提方法应用到WECC179节点测试系统和ISO New England中进行仿真、验证,结果验证了所提方法的准确性和有效性。