期刊文献+

Selective flotation separation of andalusite and quartz and its mechanism 被引量:8

Selective flotation separation of andalusite and quartz and its mechanism
下载PDF
导出
摘要 The separation of andalusite and quartz was investigated in the sodium oleate flotation system, and its mechanism was studied by solution chemical calculation, zeta-potential tests, Fourier transform infrared spectroscopic(FTIR), and X-ray photoelectron spectroscopic(XPS). The flotation tests results show that FeCl3·6H2O has a strong activation effect on andalusite and quartz and citric acid has a strong inhibitory effect on activated quartz, thus increasing the floatability difference between quartz and andalusite when the pulp p H is approximately 8. The FTIR, Zeta potential, and XPS analyses combined with the chemical calculation of flotation reagent solutions demonstrate that Fe forms hydroxide precipitates on the surface of andalusite and quartz and that oleate anions and metal ions adsorb onto the surface of the minerals. The elements Al and Fe can be chemically reacted. The anions in citric acid have different degrees of dissolution of Fe on the andalusite and quartz surfaces, thereby selectively eliminating the activation of the elemental Fe on andalusite and quartz and increasing the floatability of andalusite, leading to a better separation effect between andalusite and quartz. The separation of andalusite and quartz was investigated in the sodium oleate flotation system, and its mechanism was studied by solution chemical calculation, zeta-potential tests, Fourier transform infrared spectroscopic(FTIR), and X-ray photoelectron spectroscopic(XPS). The flotation tests results show that FeCl3·6H2O has a strong activation effect on andalusite and quartz and citric acid has a strong inhibitory effect on activated quartz, thus increasing the floatability difference between quartz and andalusite when the pulp p H is approximately 8. The FTIR, Zeta potential, and XPS analyses combined with the chemical calculation of flotation reagent solutions demonstrate that Fe forms hydroxide precipitates on the surface of andalusite and quartz and that oleate anions and metal ions adsorb onto the surface of the minerals. The elements Al and Fe can be chemically reacted. The anions in citric acid have different degrees of dissolution of Fe on the andalusite and quartz surfaces, thereby selectively eliminating the activation of the elemental Fe on andalusite and quartz and increasing the floatability of andalusite, leading to a better separation effect between andalusite and quartz.
出处 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2019年第9期1059-1068,共10页 矿物冶金与材料学报(英文版)
基金 financially supported by the State Key Laboratory of Mineral Processing of BGRIMM Technology Group, China (No.BGRIMM-KJSKL-2017-11)
关键词 ANDALUSITE QUARTZ flotation MECHANISM zeta potential Fourier infrared SPECTRUM ANALYSIS X-ray PHOTOELECTRON energy SPECTRUM ANALYSIS andalusite quartz flotation mechanism zeta potential Fourier infrared spectrum analysis X-ray photoelectron energy spectrum analysis
  • 相关文献

同被引文献90

引证文献8

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部