In Advances in Pure Mathematics (www.scirp.org/journal/apm), Vol. 1, No. 4 (July 2011), pp. 136-154, the mathematical structure of the much discussed problem of probability known as the Monty Hall problem was mapped i...In Advances in Pure Mathematics (www.scirp.org/journal/apm), Vol. 1, No. 4 (July 2011), pp. 136-154, the mathematical structure of the much discussed problem of probability known as the Monty Hall problem was mapped in detail. It is styled here as Monty Hall 1.0. The proposed analysis was then generalized to related cases involving any number of doors (d), cars (c), and opened doors (o) (Monty Hall 2.0) and 1 specific case involving more than 1 picked door (p) (Monty Hall 3.0). In cognitive terms, this analysis was interpreted in function of the presumed digital nature of rational thought and language. In the present paper, Monty Hall 1.0 and 2.0 are briefly reviewed (§§2-3). Additional generalizations of the problem are then presented in §§4-7. They concern expansions of the problem to the following items: (1) to any number of picked doors, with p denoting the number of doors initially picked and q the number of doors picked when switching doors after doors have been opened to reveal goats (Monty Hall 3.0;see §4);(3) to the precise conditions under which one’s chances increase or decrease in instances of Monty Hall 3.0 (Monty Hall 3.2;see §6);and (4) to any number of switches of doors (s) (Monty Hall 4.0;see §7). The afore-mentioned article in APM, Vol. 1, No. 4 may serve as a useful introduction to the analysis of the higher variations of the Monty Hall problem offered in the present article. The body of the article is by Leo Depuydt. An appendix by Richard D. Gill (see §8) provides additional context by building a bridge to modern probability theory in its conventional notation and by pointing to the benefits of certain interesting and relevant tools of computation now available on the Internet. The cognitive component of the earlier investigation is extended in §9 by reflections on the foundations of mathematics. It will be proposed, in the footsteps of George Boole, that the phenomenon of mathematics needs to be defined in empirical terms as something that happens to the brain or something that th展开更多
文摘In Advances in Pure Mathematics (www.scirp.org/journal/apm), Vol. 1, No. 4 (July 2011), pp. 136-154, the mathematical structure of the much discussed problem of probability known as the Monty Hall problem was mapped in detail. It is styled here as Monty Hall 1.0. The proposed analysis was then generalized to related cases involving any number of doors (d), cars (c), and opened doors (o) (Monty Hall 2.0) and 1 specific case involving more than 1 picked door (p) (Monty Hall 3.0). In cognitive terms, this analysis was interpreted in function of the presumed digital nature of rational thought and language. In the present paper, Monty Hall 1.0 and 2.0 are briefly reviewed (§§2-3). Additional generalizations of the problem are then presented in §§4-7. They concern expansions of the problem to the following items: (1) to any number of picked doors, with p denoting the number of doors initially picked and q the number of doors picked when switching doors after doors have been opened to reveal goats (Monty Hall 3.0;see §4);(3) to the precise conditions under which one’s chances increase or decrease in instances of Monty Hall 3.0 (Monty Hall 3.2;see §6);and (4) to any number of switches of doors (s) (Monty Hall 4.0;see §7). The afore-mentioned article in APM, Vol. 1, No. 4 may serve as a useful introduction to the analysis of the higher variations of the Monty Hall problem offered in the present article. The body of the article is by Leo Depuydt. An appendix by Richard D. Gill (see §8) provides additional context by building a bridge to modern probability theory in its conventional notation and by pointing to the benefits of certain interesting and relevant tools of computation now available on the Internet. The cognitive component of the earlier investigation is extended in §9 by reflections on the foundations of mathematics. It will be proposed, in the footsteps of George Boole, that the phenomenon of mathematics needs to be defined in empirical terms as something that happens to the brain or something that th