With the continuous incorporation of renewable energy and new loads into the electric power grid,random factors that induce general forced oscillations(GFOs)gradually become risks that affect the power system's se...With the continuous incorporation of renewable energy and new loads into the electric power grid,random factors that induce general forced oscillations(GFOs)gradually become risks that affect the power system's security and stability.T his research conducts a comparative analysis of the generation mechanisms of GFOs versus the traditional special forced oscillations(SFOs),specifically,from the perspective of frequency domain.Similarities and differences in en-oscillating conditions,occurrence probabilities,and the influencing factors of GFO and SFO are compared to better understand and recognize the GFO theory and the response characteristics of the power system under random excitations.A series of simulations in the lO-generator,39-bus New England Test System is carried out to verify the analysis.展开更多
Forced oscillations(FOs), or low-frequency oscillations(LFOs) caused by periodic, continuous, small power disturbances, threaten the security and stability of power systems.Flexible AC transmission system(FACTS)device...Forced oscillations(FOs), or low-frequency oscillations(LFOs) caused by periodic, continuous, small power disturbances, threaten the security and stability of power systems.Flexible AC transmission system(FACTS)devices can effectively mitigate LFOs via stability control.We propose a novel method that mitigates FOs by shifting the resonant frequency.Based on the features of the linearized swing equation of a generator, a resonant frequency shift can be achieved by controlling the synchronous torque coefficient using a unified power flow controller(UPFC).Because of the resonance mechanism, the steady-state response of an FO can be effectively mitigated when the resonant frequency changes from the original one, which was close to the disturbance frequency.The principle is that a change in resonant frequency affects the resonance condition.Simulations are conducted in a single-machine infinite-bus(SMIB) system, and the simulation results verify that the method is straightforward to implement and can significantly mitigate FOs.The controller robustness when the resonant frequency is not accurately estimated is also analyzed in the simulations.展开更多
The oscillations in a power system can be categorized into free oscillations and forced oscillations. Many algorithms have been developed to estimate the modes of free oscillations in a power system. Recently, forced ...The oscillations in a power system can be categorized into free oscillations and forced oscillations. Many algorithms have been developed to estimate the modes of free oscillations in a power system. Recently, forced oscillations have caught many researchers’ attentions.Techniques are proposed to detect forced oscillations and locate their sources. In addition, forced oscillations may have a negative impact on the estimation of mode and mode-shape if they are not properly accounted for. To improve the power system reliability and dynamic properties, it is important to first distinguish forced oscillations from free oscillations and then locate the sources of forced oscillations in a timely manner. The negative impact of forced oscillation can be mitigated when they are detected and located. This paper provides an overview of the analysis technique of forced oscillations in power systems. In addition, some future opportunities are discussed in forced oscillation studies.展开更多
The experimental results on the influences of oscillating leading edge vortex-flaps of triangular wing toward the vortex breakdown are presented in this paper. The results reveal that forced oscillationscan delay the ...The experimental results on the influences of oscillating leading edge vortex-flaps of triangular wing toward the vortex breakdown are presented in this paper. The results reveal that forced oscillationscan delay the breakdown of concentrated vortices, and large reversed-flow-regions which originally appear at the upper surface of the fixed wing at high angles of attack would be suppressed to some extent, depending on the oscillation frequencies. As a consequence, the influences can be optimized by selecting proper oscillation frequencies.展开更多
针对电力系统同步相量测量装置(phase measurement unit,PMU)短期内不能完全替代数据采集与监视控制系统(supervisory control and data acquisition,SCADA)测量每一个节点的信息,快速找到强迫功率振荡扰动源仍有一定困难的问题,提出了...针对电力系统同步相量测量装置(phase measurement unit,PMU)短期内不能完全替代数据采集与监视控制系统(supervisory control and data acquisition,SCADA)测量每一个节点的信息,快速找到强迫功率振荡扰动源仍有一定困难的问题,提出了一种快速定位扰动源的方法。在对振荡稳态时能量转换过程与风电机组引起强迫功率振荡的机理进行分析的基础上,在易发生扰动节点安装测量装置,利用TLS-ESPRIT方法对得到的数据进行计算得到各个节点能量耗散情况从而实现扰动源的快速定位。并在接入风电的10机39节点系统和某省实际电网系统中进行了仿真计算。理论分析和仿真结果验证了所提方法的正确性和有效性。展开更多
Oscillations due to three different forces in three areas of physics: electrostatic, nuclear, and mechanics, are analyzed. The electrostatic long-range Coulomb force has a different character than the nucleonic short-...Oscillations due to three different forces in three areas of physics: electrostatic, nuclear, and mechanics, are analyzed. The electrostatic long-range Coulomb force has a different character than the nucleonic short-range Yukawa force. Both are different from the linear Hooke’s force. The equation of motion of each case is solved applying a Computer Algebra System (CAS). It is shown that these oscillations have similarities and differences. Phase diagrams of all three cases are compared.展开更多
Due to the unique magnetic, mechanical and thermal properties, magnetic nanoparticles(MNPs) have comprehensive applications as the contrast and therapeutic agents in biomedical imaging and magnetic hyperthermia. The l...Due to the unique magnetic, mechanical and thermal properties, magnetic nanoparticles(MNPs) have comprehensive applications as the contrast and therapeutic agents in biomedical imaging and magnetic hyperthermia. The linear and nonlinear magnetoacoustic responses determined by the magnetic properties of MNPs have attracted more and more attention in biomedical engineering. By considering the relaxation time of MNPs, we derive the formulae of second harmonic magnetoacoustic responses(2H-MARs) for a cylindrical MNP solution model based on the mechanical oscillations of MNPs in magnetoacoustic tomography with magnetic induction(MAT-MI). It is proved that only the second harmonic magnetoacoustic oscillations can be generated by MNPs under an alternating magnetic excitation. The acoustic pressure of the 2H-MAR is proportional to the square of the magnetic field intensity and exhibits a linear increase with the concentration of MNPs. Numerical simulations of the 2H-MAR are confirmed by the experimental measurements for various magnetic field intensities and solution concentrations using a laser vibrometer. The favorable results demonstrate the feasibility of the harmonic measurements without the fundamental interference of the electromagnetic excitation, and suggest a new harmonic imaging strategy of MAT-MI for MNPs with enhanced spatial resolution and improved signal-to-noise ratio in biomedical applications.展开更多
Seismic oscillations of the “building-building” system which is interconnected buildings built close to each other, and “building-stack-like structure” system which is adjacent and connected in different ways to e...Seismic oscillations of the “building-building” system which is interconnected buildings built close to each other, and “building-stack-like structure” system which is adjacent and connected in different ways to existing building are considered in the paper. Different types of connections, such as dampers, including the ones suggested by the authors, are studied. Seismic impact is given as a harmonic function and various existing accelerograms, including synthesized ones. Distinctive feature of this paper from previously published ones [1] [2] is the fact that the emphasis falls on the influence of soil-foundation interaction properties, which are described using various models of load-displacement connections. Calculation results are compared in the case of representation of the building as concentrated masses and spatial systems. Ways to reduce seismic response of buildings during the earthquakes are pointed out. Results of experimental studies are given in the paper and are compared with calculations.展开更多
基金supported by the National Key Basic Research Program of China(973 Program)(2013CB228204)the National Natural Science Foundation of China(51137002,51190102).
文摘With the continuous incorporation of renewable energy and new loads into the electric power grid,random factors that induce general forced oscillations(GFOs)gradually become risks that affect the power system's security and stability.T his research conducts a comparative analysis of the generation mechanisms of GFOs versus the traditional special forced oscillations(SFOs),specifically,from the perspective of frequency domain.Similarities and differences in en-oscillating conditions,occurrence probabilities,and the influencing factors of GFO and SFO are compared to better understand and recognize the GFO theory and the response characteristics of the power system under random excitations.A series of simulations in the lO-generator,39-bus New England Test System is carried out to verify the analysis.
基金supported by National Natural Science Foundation of China (No.51577032)State Grid Corporation of China (No.5210K017000C)
文摘Forced oscillations(FOs), or low-frequency oscillations(LFOs) caused by periodic, continuous, small power disturbances, threaten the security and stability of power systems.Flexible AC transmission system(FACTS)devices can effectively mitigate LFOs via stability control.We propose a novel method that mitigates FOs by shifting the resonant frequency.Based on the features of the linearized swing equation of a generator, a resonant frequency shift can be achieved by controlling the synchronous torque coefficient using a unified power flow controller(UPFC).Because of the resonance mechanism, the steady-state response of an FO can be effectively mitigated when the resonant frequency changes from the original one, which was close to the disturbance frequency.The principle is that a change in resonant frequency affects the resonance condition.Simulations are conducted in a single-machine infinite-bus(SMIB) system, and the simulation results verify that the method is straightforward to implement and can significantly mitigate FOs.The controller robustness when the resonant frequency is not accurately estimated is also analyzed in the simulations.
基金supported by the funding from State University of New York
文摘The oscillations in a power system can be categorized into free oscillations and forced oscillations. Many algorithms have been developed to estimate the modes of free oscillations in a power system. Recently, forced oscillations have caught many researchers’ attentions.Techniques are proposed to detect forced oscillations and locate their sources. In addition, forced oscillations may have a negative impact on the estimation of mode and mode-shape if they are not properly accounted for. To improve the power system reliability and dynamic properties, it is important to first distinguish forced oscillations from free oscillations and then locate the sources of forced oscillations in a timely manner. The negative impact of forced oscillation can be mitigated when they are detected and located. This paper provides an overview of the analysis technique of forced oscillations in power systems. In addition, some future opportunities are discussed in forced oscillation studies.
文摘The experimental results on the influences of oscillating leading edge vortex-flaps of triangular wing toward the vortex breakdown are presented in this paper. The results reveal that forced oscillationscan delay the breakdown of concentrated vortices, and large reversed-flow-regions which originally appear at the upper surface of the fixed wing at high angles of attack would be suppressed to some extent, depending on the oscillation frequencies. As a consequence, the influences can be optimized by selecting proper oscillation frequencies.
文摘针对电力系统同步相量测量装置(phase measurement unit,PMU)短期内不能完全替代数据采集与监视控制系统(supervisory control and data acquisition,SCADA)测量每一个节点的信息,快速找到强迫功率振荡扰动源仍有一定困难的问题,提出了一种快速定位扰动源的方法。在对振荡稳态时能量转换过程与风电机组引起强迫功率振荡的机理进行分析的基础上,在易发生扰动节点安装测量装置,利用TLS-ESPRIT方法对得到的数据进行计算得到各个节点能量耗散情况从而实现扰动源的快速定位。并在接入风电的10机39节点系统和某省实际电网系统中进行了仿真计算。理论分析和仿真结果验证了所提方法的正确性和有效性。
文摘Oscillations due to three different forces in three areas of physics: electrostatic, nuclear, and mechanics, are analyzed. The electrostatic long-range Coulomb force has a different character than the nucleonic short-range Yukawa force. Both are different from the linear Hooke’s force. The equation of motion of each case is solved applying a Computer Algebra System (CAS). It is shown that these oscillations have similarities and differences. Phase diagrams of all three cases are compared.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11934009,11974187,and 11604156)。
文摘Due to the unique magnetic, mechanical and thermal properties, magnetic nanoparticles(MNPs) have comprehensive applications as the contrast and therapeutic agents in biomedical imaging and magnetic hyperthermia. The linear and nonlinear magnetoacoustic responses determined by the magnetic properties of MNPs have attracted more and more attention in biomedical engineering. By considering the relaxation time of MNPs, we derive the formulae of second harmonic magnetoacoustic responses(2H-MARs) for a cylindrical MNP solution model based on the mechanical oscillations of MNPs in magnetoacoustic tomography with magnetic induction(MAT-MI). It is proved that only the second harmonic magnetoacoustic oscillations can be generated by MNPs under an alternating magnetic excitation. The acoustic pressure of the 2H-MAR is proportional to the square of the magnetic field intensity and exhibits a linear increase with the concentration of MNPs. Numerical simulations of the 2H-MAR are confirmed by the experimental measurements for various magnetic field intensities and solution concentrations using a laser vibrometer. The favorable results demonstrate the feasibility of the harmonic measurements without the fundamental interference of the electromagnetic excitation, and suggest a new harmonic imaging strategy of MAT-MI for MNPs with enhanced spatial resolution and improved signal-to-noise ratio in biomedical applications.
文摘Seismic oscillations of the “building-building” system which is interconnected buildings built close to each other, and “building-stack-like structure” system which is adjacent and connected in different ways to existing building are considered in the paper. Different types of connections, such as dampers, including the ones suggested by the authors, are studied. Seismic impact is given as a harmonic function and various existing accelerograms, including synthesized ones. Distinctive feature of this paper from previously published ones [1] [2] is the fact that the emphasis falls on the influence of soil-foundation interaction properties, which are described using various models of load-displacement connections. Calculation results are compared in the case of representation of the building as concentrated masses and spatial systems. Ways to reduce seismic response of buildings during the earthquakes are pointed out. Results of experimental studies are given in the paper and are compared with calculations.