In this study,underwater explosion tests with 2.5 g trinitrotoluene explosive under different fixed plates with prefabricated holes were conducted.The experimental results showed that the air inflow from the prefabric...In this study,underwater explosion tests with 2.5 g trinitrotoluene explosive under different fixed plates with prefabricated holes were conducted.The experimental results showed that the air inflow from the prefabricated hole caused the bubble to collapse earlier with an increase in the hole diameter.In addition,the deformation mode of the thin plate transitioned from“convex”to“concave”(up to down).Next,the coupled Eulerian-Lagrangian method was used to perform the corresponding numerical simulation.The accuracy of the numerical simulation method was verified through a comparison with the experimental data.In addition,a series of numerical simulations were conducted with different prefabricated-hole diameters,blast distances,and prefabricated-hole shapes.The results showed that the bubble-pulsating water jet substantially influenced the deformation of the thin plate when the diameter of the prefabricated hole was within the theoretical maximum bubble radius.When the blast distance was within the theoretical maximum bubble radius,the thin plate was subjected to only a single bubble pulsation owing to the air inflow from the prefabricated hole.展开更多
An experimental method and a theoretical analysis based on continuum damage mechan- ics are applied for the defects tolerance of fixed plate. The defects type studied in this article is scratch, which is considered a ...An experimental method and a theoretical analysis based on continuum damage mechan- ics are applied for the defects tolerance of fixed plate. The defects type studied in this article is scratch, which is considered a typical defect on fixed plate according to the engineering practice. The general approach to the defects tolerance analysis of scratched fixed plate is presented. The method of fatigue life prediction for standard notched specimens has been established on the basis of continuum damage mechanics. For the purpose of obtaining the influence law of fatigue life in consequence of scratches, fatigue experiments of standard notched specimens and scratched specimens have been done. Evalu- ation of the fatigue life of scratched fixed plate has been carried out. And the value of scratch defects permissible to the condition of safety service life has been worked out. According to the results of the- oretical calculations, the fatigue experiment of scratched fixed plate has been performed. The outcome shows that the theoretical prediction tallies with the experimental results.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.12172178).
文摘In this study,underwater explosion tests with 2.5 g trinitrotoluene explosive under different fixed plates with prefabricated holes were conducted.The experimental results showed that the air inflow from the prefabricated hole caused the bubble to collapse earlier with an increase in the hole diameter.In addition,the deformation mode of the thin plate transitioned from“convex”to“concave”(up to down).Next,the coupled Eulerian-Lagrangian method was used to perform the corresponding numerical simulation.The accuracy of the numerical simulation method was verified through a comparison with the experimental data.In addition,a series of numerical simulations were conducted with different prefabricated-hole diameters,blast distances,and prefabricated-hole shapes.The results showed that the bubble-pulsating water jet substantially influenced the deformation of the thin plate when the diameter of the prefabricated hole was within the theoretical maximum bubble radius.When the blast distance was within the theoretical maximum bubble radius,the thin plate was subjected to only a single bubble pulsation owing to the air inflow from the prefabricated hole.
文摘An experimental method and a theoretical analysis based on continuum damage mechan- ics are applied for the defects tolerance of fixed plate. The defects type studied in this article is scratch, which is considered a typical defect on fixed plate according to the engineering practice. The general approach to the defects tolerance analysis of scratched fixed plate is presented. The method of fatigue life prediction for standard notched specimens has been established on the basis of continuum damage mechanics. For the purpose of obtaining the influence law of fatigue life in consequence of scratches, fatigue experiments of standard notched specimens and scratched specimens have been done. Evalu- ation of the fatigue life of scratched fixed plate has been carried out. And the value of scratch defects permissible to the condition of safety service life has been worked out. According to the results of the- oretical calculations, the fatigue experiment of scratched fixed plate has been performed. The outcome shows that the theoretical prediction tallies with the experimental results.