A sufficient condition is given to assert that a continuous mapping between Rm and Rn has a zero. The constructive proof of the result is based upon continuation methods and supplies the existence of a path leading to...A sufficient condition is given to assert that a continuous mapping between Rm and Rn has a zero. The constructive proof of the result is based upon continuation methods and supplies the existence of a path leading to the zero point.展开更多
Fixed-point fast sweeping methods are a class of explicit iterative methods developed in the literature to efficiently solve steady-state solutions of hyperbolic partial differential equations(PDEs).As other types of ...Fixed-point fast sweeping methods are a class of explicit iterative methods developed in the literature to efficiently solve steady-state solutions of hyperbolic partial differential equations(PDEs).As other types of fast sweeping schemes,fixed-point fast sweeping methods use the Gauss-Seidel iterations and alternating sweeping strategy to cover characteristics of hyperbolic PDEs in a certain direction simultaneously in each sweeping order.The resulting iterative schemes have a fast convergence rate to steady-state solutions.Moreover,an advantage of fixed-point fast sweeping methods over other types of fast sweeping methods is that they are explicit and do not involve the inverse operation of any nonlinear local system.Hence,they are robust and flexible,and have been combined with high-order accurate weighted essentially non-oscillatory(WENO)schemes to solve various hyperbolic PDEs in the literature.For multidimensional nonlinear problems,high-order fixed-point fast sweeping WENO methods still require quite a large amount of computational costs.In this technical note,we apply sparse-grid techniques,an effective approximation tool for multidimensional problems,to fixed-point fast sweeping WENO methods for reducing their computational costs.Here,we focus on fixed-point fast sweeping WENO schemes with third-order accuracy(Zhang et al.2006[41]),for solving Eikonal equations,an important class of static Hamilton-Jacobi(H-J)equations.Numerical experiments on solving multidimensional Eikonal equations and a more general static H-J equation are performed to show that the sparse-grid computations of the fixed-point fast sweeping WENO schemes achieve large savings of CPU times on refined meshes,and at the same time maintain comparable accuracy and resolution with those on corresponding regular single grids.展开更多
Fixed-point fast sweeping WENO methods are a class of efficient high-order numerical methods to solve steady-state solutions of hyperbolic partial differential equations(PDEs).The Gauss-Seidel iterations and alternati...Fixed-point fast sweeping WENO methods are a class of efficient high-order numerical methods to solve steady-state solutions of hyperbolic partial differential equations(PDEs).The Gauss-Seidel iterations and alternating sweeping strategy are used to cover characteristics of hyperbolic PDEs in each sweeping order to achieve fast convergence rate to steady-state solutions.A nice property of fixed-point fast sweeping WENO methods which distinguishes them from other fast sweeping methods is that they are explicit and do not require inverse operation of nonlinear local systems.Hence,they are easy to be applied to a general hyperbolic system.To deal with the difficulties associated with numerical boundary treatment when high-order finite difference methods on a Cartesian mesh are used to solve hyperbolic PDEs on complex domains,inverse Lax-Wendroff(ILW)procedures were developed as a very effective approach in the literature.In this paper,we combine a fifthorder fixed-point fast sweeping WENO method with an ILW procedure to solve steadystate solution of hyperbolic conservation laws on complex computing regions.Numerical experiments are performed to test the method in solving various problems including the cases with the physical boundary not aligned with the grids.Numerical results show highorder accuracy and good performance of the method.Furthermore,the method is compared with the popular third-order total variation diminishing Runge-Kutta(TVD-RK3)time-marching method for steady-state computations.Numerical examples show that for most of examples,the fixed-point fast sweeping method saves more than half CPU time costs than TVD-RK3 to converge to steady-state solutions.展开更多
Aggregate data meta-analysis is currently the most commonly used method for combining the results from different studies on the same outcome of interest. In this paper, we provide a brief introduction to meta-analysis...Aggregate data meta-analysis is currently the most commonly used method for combining the results from different studies on the same outcome of interest. In this paper, we provide a brief introduction to meta-analysis, including a description of aggregate and individual participant data meta-analysis. We then focus the rest of the tutorial on aggregate data metaanalysis. We start by first describing the difference between fixed and random-effects meta-analysis, with particular attention devoted to the latter. This is followed by an example using the random-effects, method of moments approach and includes an intercept-only model as well as a model with one predictor. We then describe alternative random-effects approaches such as maximum likelihood, restricted maximum likelihood and profile likelihood as well as a non-parametric approach. A brief description of selected statistical programs available to conduct random-effects aggregate data meta-analysis, limited to those that allow both an interceptonly as well as at least one predictor in the model, is given. These descriptions include those found in an existing general statistics software package as well as one developed specifically for an aggregate data metaanalysis. Following this, some of the disadvantages of random-effects meta-analysis are described. We then describe recently proposed alternative models for conducting aggregate data meta-analysis, including the varying coefficient model. We conclude the paper with some recommendations and directions for future research. These recommendations include the continued use of the more commonly used random-effects models until newer models are more thoroughly tested as well as the timely integration of new and well-tested models into traditional as well as meta-analytic-specific software packages.展开更多
The purpose of this paper is by using CSQ method to study the strong convergence problem of iterative sequences for a pair of strictly asymptotically pseudocontractive mappings to approximate a common fixed point in a...The purpose of this paper is by using CSQ method to study the strong convergence problem of iterative sequences for a pair of strictly asymptotically pseudocontractive mappings to approximate a common fixed point in a Hilbert space. Under suitable conditions some strong convergence theorems are proved. The results presented in the paper are new which extend and improve some recent results of Acedo and Xu [Iterative methods for strict pseudo-contractions in Hilbert spaces. Nonlinear Anal., 67(7), 2258-2271 (2007)], Kim and Xu [Strong convergence of modified Mann iterations for asymptoti- cally nonexpansive mappings and semigroups. Nonlinear Anal., 64, 1140-1152 (2006)], Martinez-Yanes and Xu [Strong convergence of the CQ method for fixed point iteration processes. Nonlinear Anal., 64, 2400-2411 (2006)], Nakajo and Takahashi pings and nonexpansive semigroups. J. Math [Strong convergence theorems for nonexpansive map- Anal. Appl., 279, 372-379 (2003)], Marino and Xu [Weak and strong convergence theorems for strict pseudocontractions in Hilbert spaces. J. Math. Anal. Appl., 329(1), 336-346 (2007)], Osilike et al. [Demiclosedness principle and convergence theorems for k-strictly asymptotically pseudocontractive maps. J. Math. Anal. Appl., 326, 1334-1345 (2007)], Liu [Convergence theorems of the sequence of iterates for asymptotically demicontractive and hemicontractive mappings. Nonlinear Anal., 26(11), 1835-1842 (1996)], Osilike et al. [Fixed points of demi-contractive mappings in arbitrary Banach spaces. Panamer Math. J., 12(2), 77-88 (2002)], Gu [The new composite implicit iteration process strictly pseudocontractive mappings. J. Math with errors for common fixed points of a finite family of Anal. Appl., 329, 766-776 (2007)].展开更多
基金This work is partially supported by D.G.E.S. PB 96-1338-CO2-01 and the Junta de Andalucla.
文摘A sufficient condition is given to assert that a continuous mapping between Rm and Rn has a zero. The constructive proof of the result is based upon continuation methods and supplies the existence of a path leading to the zero point.
文摘Fixed-point fast sweeping methods are a class of explicit iterative methods developed in the literature to efficiently solve steady-state solutions of hyperbolic partial differential equations(PDEs).As other types of fast sweeping schemes,fixed-point fast sweeping methods use the Gauss-Seidel iterations and alternating sweeping strategy to cover characteristics of hyperbolic PDEs in a certain direction simultaneously in each sweeping order.The resulting iterative schemes have a fast convergence rate to steady-state solutions.Moreover,an advantage of fixed-point fast sweeping methods over other types of fast sweeping methods is that they are explicit and do not involve the inverse operation of any nonlinear local system.Hence,they are robust and flexible,and have been combined with high-order accurate weighted essentially non-oscillatory(WENO)schemes to solve various hyperbolic PDEs in the literature.For multidimensional nonlinear problems,high-order fixed-point fast sweeping WENO methods still require quite a large amount of computational costs.In this technical note,we apply sparse-grid techniques,an effective approximation tool for multidimensional problems,to fixed-point fast sweeping WENO methods for reducing their computational costs.Here,we focus on fixed-point fast sweeping WENO schemes with third-order accuracy(Zhang et al.2006[41]),for solving Eikonal equations,an important class of static Hamilton-Jacobi(H-J)equations.Numerical experiments on solving multidimensional Eikonal equations and a more general static H-J equation are performed to show that the sparse-grid computations of the fixed-point fast sweeping WENO schemes achieve large savings of CPU times on refined meshes,and at the same time maintain comparable accuracy and resolution with those on corresponding regular single grids.
基金Research was supported by the NSFC Grant 11872210Research was supported by the NSFC Grant 11872210 and Grant No.MCMS-I-0120G01+1 种基金Research supported in part by the AFOSR Grant FA9550-20-1-0055NSF Grant DMS-2010107.
文摘Fixed-point fast sweeping WENO methods are a class of efficient high-order numerical methods to solve steady-state solutions of hyperbolic partial differential equations(PDEs).The Gauss-Seidel iterations and alternating sweeping strategy are used to cover characteristics of hyperbolic PDEs in each sweeping order to achieve fast convergence rate to steady-state solutions.A nice property of fixed-point fast sweeping WENO methods which distinguishes them from other fast sweeping methods is that they are explicit and do not require inverse operation of nonlinear local systems.Hence,they are easy to be applied to a general hyperbolic system.To deal with the difficulties associated with numerical boundary treatment when high-order finite difference methods on a Cartesian mesh are used to solve hyperbolic PDEs on complex domains,inverse Lax-Wendroff(ILW)procedures were developed as a very effective approach in the literature.In this paper,we combine a fifthorder fixed-point fast sweeping WENO method with an ILW procedure to solve steadystate solution of hyperbolic conservation laws on complex computing regions.Numerical experiments are performed to test the method in solving various problems including the cases with the physical boundary not aligned with the grids.Numerical results show highorder accuracy and good performance of the method.Furthermore,the method is compared with the popular third-order total variation diminishing Runge-Kutta(TVD-RK3)time-marching method for steady-state computations.Numerical examples show that for most of examples,the fixed-point fast sweeping method saves more than half CPU time costs than TVD-RK3 to converge to steady-state solutions.
基金Supported by Grant R01 HL069802 from the National Institutes of Health,National Heart,Lung and Blood Institute(to Kelley GA)
文摘Aggregate data meta-analysis is currently the most commonly used method for combining the results from different studies on the same outcome of interest. In this paper, we provide a brief introduction to meta-analysis, including a description of aggregate and individual participant data meta-analysis. We then focus the rest of the tutorial on aggregate data metaanalysis. We start by first describing the difference between fixed and random-effects meta-analysis, with particular attention devoted to the latter. This is followed by an example using the random-effects, method of moments approach and includes an intercept-only model as well as a model with one predictor. We then describe alternative random-effects approaches such as maximum likelihood, restricted maximum likelihood and profile likelihood as well as a non-parametric approach. A brief description of selected statistical programs available to conduct random-effects aggregate data meta-analysis, limited to those that allow both an interceptonly as well as at least one predictor in the model, is given. These descriptions include those found in an existing general statistics software package as well as one developed specifically for an aggregate data metaanalysis. Following this, some of the disadvantages of random-effects meta-analysis are described. We then describe recently proposed alternative models for conducting aggregate data meta-analysis, including the varying coefficient model. We conclude the paper with some recommendations and directions for future research. These recommendations include the continued use of the more commonly used random-effects models until newer models are more thoroughly tested as well as the timely integration of new and well-tested models into traditional as well as meta-analytic-specific software packages.
基金Supported by Natural Science Foundation of Yibin University (Grant No. 2007Z3)
文摘The purpose of this paper is by using CSQ method to study the strong convergence problem of iterative sequences for a pair of strictly asymptotically pseudocontractive mappings to approximate a common fixed point in a Hilbert space. Under suitable conditions some strong convergence theorems are proved. The results presented in the paper are new which extend and improve some recent results of Acedo and Xu [Iterative methods for strict pseudo-contractions in Hilbert spaces. Nonlinear Anal., 67(7), 2258-2271 (2007)], Kim and Xu [Strong convergence of modified Mann iterations for asymptoti- cally nonexpansive mappings and semigroups. Nonlinear Anal., 64, 1140-1152 (2006)], Martinez-Yanes and Xu [Strong convergence of the CQ method for fixed point iteration processes. Nonlinear Anal., 64, 2400-2411 (2006)], Nakajo and Takahashi pings and nonexpansive semigroups. J. Math [Strong convergence theorems for nonexpansive map- Anal. Appl., 279, 372-379 (2003)], Marino and Xu [Weak and strong convergence theorems for strict pseudocontractions in Hilbert spaces. J. Math. Anal. Appl., 329(1), 336-346 (2007)], Osilike et al. [Demiclosedness principle and convergence theorems for k-strictly asymptotically pseudocontractive maps. J. Math. Anal. Appl., 326, 1334-1345 (2007)], Liu [Convergence theorems of the sequence of iterates for asymptotically demicontractive and hemicontractive mappings. Nonlinear Anal., 26(11), 1835-1842 (1996)], Osilike et al. [Fixed points of demi-contractive mappings in arbitrary Banach spaces. Panamer Math. J., 12(2), 77-88 (2002)], Gu [The new composite implicit iteration process strictly pseudocontractive mappings. J. Math with errors for common fixed points of a finite family of Anal. Appl., 329, 766-776 (2007)].