In this study,we propose an efficient numerical framework to attain the solution of the extended Fisher-Kolmogorov(EFK)problem.The temporal derivative in the EFK equation is approximated by utilizing the Crank-Nicolso...In this study,we propose an efficient numerical framework to attain the solution of the extended Fisher-Kolmogorov(EFK)problem.The temporal derivative in the EFK equation is approximated by utilizing the Crank-Nicolson scheme.Following temporal discretization,the generalized finite difference method(GFDM)with supplementary nodes is utilized to address the nonlinear boundary value problems at each time node.These supplementary nodes are distributed along the boundary to match the number of boundary nodes.By incorporating supplementary nodes,the resulting nonlinear algebraic equations can effectively satisfy the governing equation and boundary conditions of the EFK equation.To demonstrate the efficacy of our approach,we present three numerical examples showcasing its performance in solving this nonlinear problem.展开更多
This study is concerned with the numerical approximation of the extended Fisher-Kolmogorov equation with a modified boundary integral method. A key aspect of this formulation is that it relaxes the domain-driven appro...This study is concerned with the numerical approximation of the extended Fisher-Kolmogorov equation with a modified boundary integral method. A key aspect of this formulation is that it relaxes the domain-driven approach of a typical boundary element (BEM) technique. While its discretization keeps faith with the second order accurate BEM formulation, its implementation is element-based. This leads to a local solution of all integral equation and their final assembly into a slender and banded coefficient matrix which is far easier to manipulate numerically. This outcome is much better than working with BEM’s fully populated coefficient matrices resulting from a numerical encounter with the problem domain especially for nonlinear, transient, and heterogeneous problems. Faithful results of high accuracy are achieved when the results obtained herein are compared with those available in literature.展开更多
This paper mainly discusses the existence of nontrivial homoclinic solutions for nonperiodic semilinear fourth-order ordinary differential equation u^(4)+pu″+a(x)u-b(x)u^2=c(x)u^3=3arising in the study of p...This paper mainly discusses the existence of nontrivial homoclinic solutions for nonperiodic semilinear fourth-order ordinary differential equation u^(4)+pu″+a(x)u-b(x)u^2=c(x)u^3=3arising in the study of pattern formation by means of Mountain Pass Lemma.展开更多
In this paper, the authors prove an analogue of Gibbons' conjecture for the extended fourth order Allen-Cahn equation in R^N, as well as Liouville type results for some solutions converging to the same value at in...In this paper, the authors prove an analogue of Gibbons' conjecture for the extended fourth order Allen-Cahn equation in R^N, as well as Liouville type results for some solutions converging to the same value at infinity in a given direction. The authors also prove a priori bounds and further one-dimensional symmetry and rigidity results for semilinear fourth order elliptic equations with more general nonlinearities.展开更多
In this paper we study one-dimensional Fisher-Kolmogorov equation with density dependent non-linear diffusion. We choose the diffusion as a function of cell density such that it is high in highly cell populated areas ...In this paper we study one-dimensional Fisher-Kolmogorov equation with density dependent non-linear diffusion. We choose the diffusion as a function of cell density such that it is high in highly cell populated areas and it is small in the regions of fewer cells. The Fisher equation with non-linear diffusion is known as modified Fisher equation. We study the travelling wave solution of modified Fisher equation and find the approximation of minimum wave speed analytically, by using the eigenvalues of the stationary states, and numerically by using COMSOL (a commercial finite element solver). The results reveal that the minimum wave speed depends on the parameter values involved in the model. We observe that when diffusion is moderately non-linear, the eigenvalue method correctly predicts the minimum wave speed in our numerical calculations, but when diffusion is strongly non-linear the eigenvalues method gives the wrong answer.展开更多
In this paper, we use a dynamical systems approach to prove the existence of traveling waves solutions for the Fisher-Kolmogorov density-dependent equation. Moreover, we prove the existence of upper and lower bounds f...In this paper, we use a dynamical systems approach to prove the existence of traveling waves solutions for the Fisher-Kolmogorov density-dependent equation. Moreover, we prove the existence of upper and lower bounds for these traveling wave solutions found previously. Finally, we present a particular example which has several applications in the mathematical biology field.展开更多
基金supported by the Key Laboratory of Road Construction Technology and Equipment(Chang’an University,No.300102253502)the Natural Science Foundation of Shandong Province of China(GrantNo.ZR2022YQ06)the Development Plan of Youth Innovation Team in Colleges and Universities of Shandong Province(Grant No.2022KJ140).
文摘In this study,we propose an efficient numerical framework to attain the solution of the extended Fisher-Kolmogorov(EFK)problem.The temporal derivative in the EFK equation is approximated by utilizing the Crank-Nicolson scheme.Following temporal discretization,the generalized finite difference method(GFDM)with supplementary nodes is utilized to address the nonlinear boundary value problems at each time node.These supplementary nodes are distributed along the boundary to match the number of boundary nodes.By incorporating supplementary nodes,the resulting nonlinear algebraic equations can effectively satisfy the governing equation and boundary conditions of the EFK equation.To demonstrate the efficacy of our approach,we present three numerical examples showcasing its performance in solving this nonlinear problem.
文摘This study is concerned with the numerical approximation of the extended Fisher-Kolmogorov equation with a modified boundary integral method. A key aspect of this formulation is that it relaxes the domain-driven approach of a typical boundary element (BEM) technique. While its discretization keeps faith with the second order accurate BEM formulation, its implementation is element-based. This leads to a local solution of all integral equation and their final assembly into a slender and banded coefficient matrix which is far easier to manipulate numerically. This outcome is much better than working with BEM’s fully populated coefficient matrices resulting from a numerical encounter with the problem domain especially for nonlinear, transient, and heterogeneous problems. Faithful results of high accuracy are achieved when the results obtained herein are compared with those available in literature.
基金The Project sponsored by SRF for ROCS, SEM"985 Engineer" of China (CUN 985-3-3)
文摘This paper mainly discusses the existence of nontrivial homoclinic solutions for nonperiodic semilinear fourth-order ordinary differential equation u^(4)+pu″+a(x)u-b(x)u^2=c(x)u^3=3arising in the study of pattern formation by means of Mountain Pass Lemma.
基金carried out in the framework of the Labex Archimède(ANR-11-LABX-0033)the A*MIDEX project(ANR-11-IDEX-0001-02)+6 种基金funded by the "Investissements d’Avenir" French Government program managed by the French National Research Agency(ANR)funding from the European Research Council under the European Union’s Seventh Framework Programme(FP/2007-2013)ERC Grant Agreement n.321186-ReaDiReaction-Diffusion Equations,Propagation and Modelling and from the ANR NONLOCAL project(ANR-14-CE25-0013)supported by INRIA-Team MEPHYSTOMIS F.4508.14(FNRS)PDR T.1110.14F(FNRS)ARC AUWB-2012-12/17-ULB1-IAPAS
文摘In this paper, the authors prove an analogue of Gibbons' conjecture for the extended fourth order Allen-Cahn equation in R^N, as well as Liouville type results for some solutions converging to the same value at infinity in a given direction. The authors also prove a priori bounds and further one-dimensional symmetry and rigidity results for semilinear fourth order elliptic equations with more general nonlinearities.
文摘In this paper we study one-dimensional Fisher-Kolmogorov equation with density dependent non-linear diffusion. We choose the diffusion as a function of cell density such that it is high in highly cell populated areas and it is small in the regions of fewer cells. The Fisher equation with non-linear diffusion is known as modified Fisher equation. We study the travelling wave solution of modified Fisher equation and find the approximation of minimum wave speed analytically, by using the eigenvalues of the stationary states, and numerically by using COMSOL (a commercial finite element solver). The results reveal that the minimum wave speed depends on the parameter values involved in the model. We observe that when diffusion is moderately non-linear, the eigenvalue method correctly predicts the minimum wave speed in our numerical calculations, but when diffusion is strongly non-linear the eigenvalues method gives the wrong answer.
文摘In this paper, we use a dynamical systems approach to prove the existence of traveling waves solutions for the Fisher-Kolmogorov density-dependent equation. Moreover, we prove the existence of upper and lower bounds for these traveling wave solutions found previously. Finally, we present a particular example which has several applications in the mathematical biology field.