In this paper in an elegant way will be presented the unity formulas for the coupling constants and the dimensionless physical constants. We reached the conclusion of the simple unification of the fundamental interact...In this paper in an elegant way will be presented the unity formulas for the coupling constants and the dimensionless physical constants. We reached the conclusion of the simple unification of the fundamental interactions. We will find the formulas for the Gravitational constant. It will be presented that the gravitational fine-structure constant is a simple analogy between atomic physics and cosmology. We will find the expression that connects the gravitational fine-structure constant with the four coupling constants. Perhaps the gravitational fine-structure constant is the coupling constant for the fifth force. Also will be presented the simple unification of atomic physics and cosmology. We will find the formulas for the cosmological constant and we will propose a possible solution for the cosmological parameters. Perhaps the shape of the universe is Poincare dodecahedral space. This article will be followed by the energy wave theory and the fractal space-time theory.展开更多
A symmetrical quartic polynomial, named golden one, can be connected to coefficients of the icosahedron equation as well as to the gyromagnetic correction of the electron and to number 137. This number is not a mystic...A symmetrical quartic polynomial, named golden one, can be connected to coefficients of the icosahedron equation as well as to the gyromagnetic correction of the electron and to number 137. This number is not a mystic one, but is connected with the inverse of Sommerfeld’s fine-structure constant and this way again connected with the electron. From number-theoretical realities, including the reciprocity relation of the golden ratio as effective pre-calculator of nature’s creativeness, a proposed closeness to the icosahedron may point towards the structure of the electron, thought off as a single-strand compacted helically self-confined charged elemantary particle of less spherical but assumed blunted icosahedral shape generated from a high energy double-helix photon. We constructed a chiral Moebius “ball” from a 13 times 180˚twisted double helix strand, where the turning points of 12 generated slings were arranged towards the vertices of a regular icosahedron, belonging to the non-centrosymmetric rotation group I532. Mathematically put, we convert the helical motion of an energy quantum into a stationary motion on a Moebius stripe structure. The radius of the ball is about the Compton radius. This chiral closed circuit Moebius ball motion profile can be tentatively thought off as the dominant quantum vortex structure of the electron, and the model may be named CEWMB (Charged Electromagnetic Wave Moebius Ball). Also the gyromagnetic factor of the electron (g<sub>e</sub> = 2.002319) can be traced back to this special structure. However, nature’s energy infinity principle would suggest a superposition with additional less dominant (secondary) structures, governed also by the golden mean. A suggestion about the possible structure of delocalized hole carriers in the superconducting state is given.展开更多
Previously, we presented several empirical equations using the cosmic microwave background (CMB) temperature. Next, we propose an empirical equation for the fine-structure constant. Considering the compatibility among...Previously, we presented several empirical equations using the cosmic microwave background (CMB) temperature. Next, we propose an empirical equation for the fine-structure constant. Considering the compatibility among these empirical equations, the CMB temperature (Tc) and gravitational constant (G) were calculated to be 2.726312 K and 6.673778 × 10−11 m3∙kg−1∙s−2, respectively. Every equation can be explained numerically in terms of the Compton length of an electron (λe), the Compton length of a proton (λp) and α. Furthermore, every equation can also be explained in terms of the Avogadro number and the number of electrons at 1 C. We show that every equation can be described in terms of the Planck constant. Then, the ratio of the gravitational force to the electric force can be uniquely determined with the assumption of minimum mass. In this report, we describe the algorithms used to explain these equations in detail. Thus, there are no dimension mismatch problems.展开更多
This study aims to demonstrate a proof of concept for a novel theory of the universe based on the Fine Structure Constant (α), derived from n-dimensional prime number property sets, specifically α = 137 and α = 139...This study aims to demonstrate a proof of concept for a novel theory of the universe based on the Fine Structure Constant (α), derived from n-dimensional prime number property sets, specifically α = 137 and α = 139. The FSC Model introduces a new perspective on the fundamental nature of our universe, showing that α = 137.036 can be calculated from these prime property sets. The Fine Structure Constant, a cornerstone in Quantum Electrodynamics (QED) and Quantum Chromodynamics (QCD), implies an underlying structure. This study identifies this mathematical framework and demonstrates how the FSC model theory aligns with our current understanding of physics and cosmology. The results unveil a hierarchy of α values for twin prime pairs U{3/2} through U{199/197}. These values, represented by their fraction parts α♊ (e.g., 0.036), define the relative electromagnetic forces driving quantum energy systems. The lower twin prime pairs, such as U{3/2}, exhibit higher EM forces that decrease as the twin pairs increase, turning dark when they drop below the α♊ for light. The results provide classical definitions for Baryonic Matter/Energy, Dark Matter, Dark Energy, and Antimatter but mostly illustrate how the combined α♊ values for three adjacent twin primes, U{7/5/3/2} mirrors the strong nuclear force of gluons holding quarks together.展开更多
Reciprocity may be understood as relation of action and reaction in the sense of Hegel’s philosophical definition. Quoting Kant, freedom and ethical necessities are reciprocally limited. In this contribution, a more ...Reciprocity may be understood as relation of action and reaction in the sense of Hegel’s philosophical definition. Quoting Kant, freedom and ethical necessities are reciprocally limited. In this contribution, a more mathematical than philosophical reflection about reciprocity as an ever-present dual property of everything was given. As a crystallographer, the author is familiar with the action of Fourier transforms and the relation between a crystal lattice and its reciprocal lattice, already pointing to the duality between particles and waves. A generalization of the reciprocity term was stimulated by results of the famous Information Relativity (IR) theory of Suleiman with its proven physical manifestation of matter-wave duality, compared to the set-theoretical E-Infinity theory developed by El Naschie, where the zero set represents the pre-quantum particle, and the pre-quantum wave is assigned to the empty set boundary surrounding the pre-particle. Expectedly, the most irrational number of the golden mean is involved in these thoughts, because this number is intimately connected with its inverse. An important role plays further Hardy’s maximum quantum entanglement probability as the fifth power of φand its connection to the dark matter. Remembering, the eleven dimensions in Witten’s M-theory may be decomposed into the Lucas number L5 = 11 = φ−5 – φ5. Reciprocity is indeed omnipresent in our world as piloting waves that accompany all observable earthen and cosmic matter. As a side effect of the IR theory some fundamental constants such as the gyromagnetic factor of the electron, Sommerfeld’s fine-structure constant as well as the charge of the electron must be marginally changed caused by altered relativistic corrections. Consequences also arise for our vision about the evolution of life and consciousness.展开更多
In previous publications, the author has proposed a model of the electron’s internal structure, wherein a positively-charged negative mass outer shell and a negatively-charged positive mass central core are proposed ...In previous publications, the author has proposed a model of the electron’s internal structure, wherein a positively-charged negative mass outer shell and a negatively-charged positive mass central core are proposed to resolve the electron’s charge and mass inconsistencies. That model is modified in this document by assuming the electron’s radius is exactly equal to the classical electron radius. The attributes of the internal components of the electron’s structure have been recalculated accordingly. The shape of the electron is also predicted, and found to be slightly aspherical on the order of an oblate ellipsoid. This shape is attributed to centrifugal force and compliant outer shell material. It is interesting to note that all of the electron’s attributes, both external and internal, with the exception of mass and angular moment, are functions of the fine structure constant a, and can be calculated from just three additional constants: electron mass, Planck’s constant, and speed of light. In particular, the ratios of the outer shell charge and mass to the electron charge and mass, respectively, are 3/2a. The ratios of the central core charge and mass to the electron charge and mass, respectively, are 1-(3/2a). Attributes of the electron are compared with those of the muon. Charge and spin angular momentum are the same, while mass, magnetic moment, and radius appear to be related by the fine structure constant. The mass of the electron outer shell is nearly equal to the mass of the muon. The muon internal structure can be modeled exactly the same as for the electron, with exactly the same attribute relationships.展开更多
The nature and the origin of the fine structure are described. Based on the vortex model and hydrodynamics, a comprehensible interpretation of the fine structure constant is developed. The vacuum considered to have su...The nature and the origin of the fine structure are described. Based on the vortex model and hydrodynamics, a comprehensible interpretation of the fine structure constant is developed. The vacuum considered to have superfluid characteristics and elementary particles such as the electron and Hydrogen molecule are irrotational vortices of this superfluid. In such a vortex, the angular rotation ω is maintained, and the larger the radius, the slower the rotational speed. The fine structure value is derived from the ratio of the rotational speed of the boundaries of the vortex to the speed of the vortex eye in its center. Since the angular rotation is constant, the same value was derived from the ratio between the radius of the constant vortex core and the radius of the hall vortex. Therefore, the constancy of alpha is an expression of the constancy relation in the vortex structure.展开更多
The Fine Structure Constant (α) is a dimensionless value that guides much of quantum physics but with no scientific insight into why this specific number. The number defines the coupling constant for the strength of ...The Fine Structure Constant (α) is a dimensionless value that guides much of quantum physics but with no scientific insight into why this specific number. The number defines the coupling constant for the strength of the electromagnetic force and is precisely tuned to make our universe functional. This study introduces a novel approach to understanding a conceptual model for how this critical number is part of a larger design rather than a random accident of nature. The Fine Structure Constant (FSC) model employs a Python program to calculate n-dimensional property sets for prime number universes where α equals the whole number values 137 and 139, representing twin prime universes without a fractional constant. Each property is defined by theoretical prime number sets that represent focal points of matter and wave energy in their respective universes. This work aims to determine if these prime number sets can reproduce the observed α value, giving it a definable structure. The result of the FSC model produces a α value equal to 137.036, an almost exact match. Furthermore, the model indicates that other twin prime pairs also have a role in our functional universe, providing a hierarchy for atomic orbital energy levels and alignment with the principal and azimuthal quantum numbers. In addition, it construes stable matter as property sets with the highest ratio of twin prime elements. These results provide a new perspective on a mathematical structure that shapes our universe and, if valid, has the structural complexity to guide future research.展开更多
It is shown that the fine structure constant at Planck times tends to one as well as those of the weak and strong interactions. This results by constraining them at the Planck force. That seems to provide interesting ...It is shown that the fine structure constant at Planck times tends to one as well as those of the weak and strong interactions. This results by constraining them at the Planck force. That seems to provide interesting new results which confirm that at the beginning of space time (Planck scale) all fundamental forces converge to the same unit value.展开更多
We proposed an empirical equation for a fine-structure constant: . Then, . where m<sub>p</sub> and m<sub>e</sub> are the rest mass of a proton and the rest mass of an electron, respectively. In...We proposed an empirical equation for a fine-structure constant: . Then, . where m<sub>p</sub> and m<sub>e</sub> are the rest mass of a proton and the rest mass of an electron, respectively. In this report, using the electrochemical method, we proposed an equivalent circuit. Then, we proposed a refined version of our own old empirical equations about the electromagnetic force and gravity. Regarding the factors of 9/2 and π, we used 3.132011447 and 4.488519503, respectively. The calculated values of T<sub>c</sub> and G are 2.726312 K and 6.673778 × 10<sup>-11</sup> (m<sup>3</sup>⋅kg<sup>-1</sup>⋅s<sup>-2</sup>).展开更多
A model for the internal structure of the electron using classical physics equations has been previously published by the author. The model employs both positive and negative charges and positive and negative masses. ...A model for the internal structure of the electron using classical physics equations has been previously published by the author. The model employs both positive and negative charges and positive and negative masses. The internal attributes of the electron structure were calculated for both ring and spherical shapes. Further examination of the model reveals an instability for the ring shape. The spherical shape appears to be stable, but relies on tensile or compressive forces of the electron material for stability. The model is modified in this document to eliminate the dependency on material forces. Uniform stability is provided solely by balancing electrical and centrifugal forces. This stability is achieved by slightly elongating the sphere along the spin axis to create a prolate ellipsoid. The semi-major axis of the ellipsoid is the spin axis of the electron, and is calculated to be 1.20% longer than the semi-minor axis, which is the radius of the equator. Although the shape deviates slightly from a perfect sphere, the electric dipole moment is zero. In the author’s previously published document, the attributes of the internal components of the electron, such as charge and mass, were calculated and expressed as ratios to the classically measured values for the composite electron. It is interesting to note that all of these ratios are nearly the same as the inverse of the Fine Structure Constant, with differences of less than 15%. The electron model assumed that the outer surface charge was fixed and uniform. By allowing the charge to be mobile and the shape to have a particular ellipticity, it is shown that the calculated charge and mass ratios for the model can be exactly equal to the Fine Structure Constant and the Constant plus one. The electron radius predicted by the model is 15% greater than the Classical Electron Radius.展开更多
In this paper, we delve into the intrinsic nature of mass and gravity, as per the amplitude modulation interpretation of the quantum theory. We explore the idea that the elementary constituent is an electromagnetic co...In this paper, we delve into the intrinsic nature of mass and gravity, as per the amplitude modulation interpretation of the quantum theory. We explore the idea that the elementary constituent is an electromagnetic configuration that interacts with the quantum field, leading to the emergence of inertia and gravity as a reaction to the exchange with the quantum field. While these two phenomena have a common origin, they are distinct. Our proposal suggests manipulating the connection between the quantum field and the particle using high-frequency electromagnetic fields, thereby making a warp drive possible.展开更多
Gravity is the only force that cannot be explained by the Standard Model (SM), the current best theory describing all the known fundamental particles and their forces. Here we reveal that gravitational force can be pr...Gravity is the only force that cannot be explained by the Standard Model (SM), the current best theory describing all the known fundamental particles and their forces. Here we reveal that gravitational force can be precisely given by mass of objects and microwave background (CMB) radiation. Moreover, using the same strategy we reveal a relation by which CMB can also precisely define fine-structure constant α.展开更多
The equations for energy, momentum, frequency, wavelength and also Schr?dinger equation of the electromagnetic wave in the atom are derived using the model of atom by analogy with the transmission line. The action con...The equations for energy, momentum, frequency, wavelength and also Schr?dinger equation of the electromagnetic wave in the atom are derived using the model of atom by analogy with the transmission line. The action constant A0 = (μ0/ε0)1/2s02e2 is a key term in the above mentioned equations. Besides the other well-known quantities, the only one unknown quantity in the last expression is a structural constant s0. Therefore, this article is dedicated to the calculation of the structural constant of the atoms on the basis of the above mentioned model. The structural constant of the atoms s0 = 8.277 56 shows up as a link between macroscopic and atomic world. After calculating this constant we get the theory of atoms based on Maxwell’s and Lorentz equations only. This theory does not require Planck constant h, which once was introduced empirically. Replacement for h is the action constant A0, which is here theoretically derived, while the replacement for fine structure constant α is 1/(2s02). In this way, the structural constant s0 replaces both constants, h and α. This paper also defines the stationary states of atoms and shows that the maximal atomic number is equal to 2s02 = 137.036, i.e., as integer should be Zmax=137. The presented model of the atoms covers three of the four fundamental interactions, namely the electromagnetic, weak and strong interactions.展开更多
A century ago the classical physics couldn’t explain many atomic physical phenomena. Now the situation has changed. It’s because within the framework of classical physics with the help of Maxwell’s equations we can...A century ago the classical physics couldn’t explain many atomic physical phenomena. Now the situation has changed. It’s because within the framework of classical physics with the help of Maxwell’s equations we can derive Schrödinger’s equation, which is the foundation of quantum physics. The equations for energy, momentum, frequency and wavelength of the electromagnetic wave in the atom are derived using the model of atom by analogy with the transmission line. The action constant A0 = (μ0/ε0)1/2s02e2 is a key term in the above mentioned equations. Besides the other well-known constants, the only unknown constant in the last expression is a structural constant of the atom s0. We have found that the value of this constant is 8.277 56 and that it shows up as a link between macroscopic and atomic world. After calculating this constant we get the theory of atoms based on Maxwell’s and Lorentz equations only. This theory does not require knowledge of Planck’s constant h, which is replaced with theoretically derived action constant A0, while the replacement for the fine structure constant α-1 is theoretically derived expression 2s02 = 137.036. So, the structural constant s0 replaces both constants h and α. This paper also defines the stationary states of atoms and shows that the maximal atomic number is equal to Zmax = 137. The presented model of the atoms covers three of the four fundamental interactions, namely the electromagnetic, weak and strong interactions.展开更多
文摘In this paper in an elegant way will be presented the unity formulas for the coupling constants and the dimensionless physical constants. We reached the conclusion of the simple unification of the fundamental interactions. We will find the formulas for the Gravitational constant. It will be presented that the gravitational fine-structure constant is a simple analogy between atomic physics and cosmology. We will find the expression that connects the gravitational fine-structure constant with the four coupling constants. Perhaps the gravitational fine-structure constant is the coupling constant for the fifth force. Also will be presented the simple unification of atomic physics and cosmology. We will find the formulas for the cosmological constant and we will propose a possible solution for the cosmological parameters. Perhaps the shape of the universe is Poincare dodecahedral space. This article will be followed by the energy wave theory and the fractal space-time theory.
文摘A symmetrical quartic polynomial, named golden one, can be connected to coefficients of the icosahedron equation as well as to the gyromagnetic correction of the electron and to number 137. This number is not a mystic one, but is connected with the inverse of Sommerfeld’s fine-structure constant and this way again connected with the electron. From number-theoretical realities, including the reciprocity relation of the golden ratio as effective pre-calculator of nature’s creativeness, a proposed closeness to the icosahedron may point towards the structure of the electron, thought off as a single-strand compacted helically self-confined charged elemantary particle of less spherical but assumed blunted icosahedral shape generated from a high energy double-helix photon. We constructed a chiral Moebius “ball” from a 13 times 180˚twisted double helix strand, where the turning points of 12 generated slings were arranged towards the vertices of a regular icosahedron, belonging to the non-centrosymmetric rotation group I532. Mathematically put, we convert the helical motion of an energy quantum into a stationary motion on a Moebius stripe structure. The radius of the ball is about the Compton radius. This chiral closed circuit Moebius ball motion profile can be tentatively thought off as the dominant quantum vortex structure of the electron, and the model may be named CEWMB (Charged Electromagnetic Wave Moebius Ball). Also the gyromagnetic factor of the electron (g<sub>e</sub> = 2.002319) can be traced back to this special structure. However, nature’s energy infinity principle would suggest a superposition with additional less dominant (secondary) structures, governed also by the golden mean. A suggestion about the possible structure of delocalized hole carriers in the superconducting state is given.
文摘Previously, we presented several empirical equations using the cosmic microwave background (CMB) temperature. Next, we propose an empirical equation for the fine-structure constant. Considering the compatibility among these empirical equations, the CMB temperature (Tc) and gravitational constant (G) were calculated to be 2.726312 K and 6.673778 × 10−11 m3∙kg−1∙s−2, respectively. Every equation can be explained numerically in terms of the Compton length of an electron (λe), the Compton length of a proton (λp) and α. Furthermore, every equation can also be explained in terms of the Avogadro number and the number of electrons at 1 C. We show that every equation can be described in terms of the Planck constant. Then, the ratio of the gravitational force to the electric force can be uniquely determined with the assumption of minimum mass. In this report, we describe the algorithms used to explain these equations in detail. Thus, there are no dimension mismatch problems.
文摘This study aims to demonstrate a proof of concept for a novel theory of the universe based on the Fine Structure Constant (α), derived from n-dimensional prime number property sets, specifically α = 137 and α = 139. The FSC Model introduces a new perspective on the fundamental nature of our universe, showing that α = 137.036 can be calculated from these prime property sets. The Fine Structure Constant, a cornerstone in Quantum Electrodynamics (QED) and Quantum Chromodynamics (QCD), implies an underlying structure. This study identifies this mathematical framework and demonstrates how the FSC model theory aligns with our current understanding of physics and cosmology. The results unveil a hierarchy of α values for twin prime pairs U{3/2} through U{199/197}. These values, represented by their fraction parts α♊ (e.g., 0.036), define the relative electromagnetic forces driving quantum energy systems. The lower twin prime pairs, such as U{3/2}, exhibit higher EM forces that decrease as the twin pairs increase, turning dark when they drop below the α♊ for light. The results provide classical definitions for Baryonic Matter/Energy, Dark Matter, Dark Energy, and Antimatter but mostly illustrate how the combined α♊ values for three adjacent twin primes, U{7/5/3/2} mirrors the strong nuclear force of gluons holding quarks together.
文摘Reciprocity may be understood as relation of action and reaction in the sense of Hegel’s philosophical definition. Quoting Kant, freedom and ethical necessities are reciprocally limited. In this contribution, a more mathematical than philosophical reflection about reciprocity as an ever-present dual property of everything was given. As a crystallographer, the author is familiar with the action of Fourier transforms and the relation between a crystal lattice and its reciprocal lattice, already pointing to the duality between particles and waves. A generalization of the reciprocity term was stimulated by results of the famous Information Relativity (IR) theory of Suleiman with its proven physical manifestation of matter-wave duality, compared to the set-theoretical E-Infinity theory developed by El Naschie, where the zero set represents the pre-quantum particle, and the pre-quantum wave is assigned to the empty set boundary surrounding the pre-particle. Expectedly, the most irrational number of the golden mean is involved in these thoughts, because this number is intimately connected with its inverse. An important role plays further Hardy’s maximum quantum entanglement probability as the fifth power of φand its connection to the dark matter. Remembering, the eleven dimensions in Witten’s M-theory may be decomposed into the Lucas number L5 = 11 = φ−5 – φ5. Reciprocity is indeed omnipresent in our world as piloting waves that accompany all observable earthen and cosmic matter. As a side effect of the IR theory some fundamental constants such as the gyromagnetic factor of the electron, Sommerfeld’s fine-structure constant as well as the charge of the electron must be marginally changed caused by altered relativistic corrections. Consequences also arise for our vision about the evolution of life and consciousness.
文摘In previous publications, the author has proposed a model of the electron’s internal structure, wherein a positively-charged negative mass outer shell and a negatively-charged positive mass central core are proposed to resolve the electron’s charge and mass inconsistencies. That model is modified in this document by assuming the electron’s radius is exactly equal to the classical electron radius. The attributes of the internal components of the electron’s structure have been recalculated accordingly. The shape of the electron is also predicted, and found to be slightly aspherical on the order of an oblate ellipsoid. This shape is attributed to centrifugal force and compliant outer shell material. It is interesting to note that all of the electron’s attributes, both external and internal, with the exception of mass and angular moment, are functions of the fine structure constant a, and can be calculated from just three additional constants: electron mass, Planck’s constant, and speed of light. In particular, the ratios of the outer shell charge and mass to the electron charge and mass, respectively, are 3/2a. The ratios of the central core charge and mass to the electron charge and mass, respectively, are 1-(3/2a). Attributes of the electron are compared with those of the muon. Charge and spin angular momentum are the same, while mass, magnetic moment, and radius appear to be related by the fine structure constant. The mass of the electron outer shell is nearly equal to the mass of the muon. The muon internal structure can be modeled exactly the same as for the electron, with exactly the same attribute relationships.
文摘The nature and the origin of the fine structure are described. Based on the vortex model and hydrodynamics, a comprehensible interpretation of the fine structure constant is developed. The vacuum considered to have superfluid characteristics and elementary particles such as the electron and Hydrogen molecule are irrotational vortices of this superfluid. In such a vortex, the angular rotation ω is maintained, and the larger the radius, the slower the rotational speed. The fine structure value is derived from the ratio of the rotational speed of the boundaries of the vortex to the speed of the vortex eye in its center. Since the angular rotation is constant, the same value was derived from the ratio between the radius of the constant vortex core and the radius of the hall vortex. Therefore, the constancy of alpha is an expression of the constancy relation in the vortex structure.
文摘The Fine Structure Constant (α) is a dimensionless value that guides much of quantum physics but with no scientific insight into why this specific number. The number defines the coupling constant for the strength of the electromagnetic force and is precisely tuned to make our universe functional. This study introduces a novel approach to understanding a conceptual model for how this critical number is part of a larger design rather than a random accident of nature. The Fine Structure Constant (FSC) model employs a Python program to calculate n-dimensional property sets for prime number universes where α equals the whole number values 137 and 139, representing twin prime universes without a fractional constant. Each property is defined by theoretical prime number sets that represent focal points of matter and wave energy in their respective universes. This work aims to determine if these prime number sets can reproduce the observed α value, giving it a definable structure. The result of the FSC model produces a α value equal to 137.036, an almost exact match. Furthermore, the model indicates that other twin prime pairs also have a role in our functional universe, providing a hierarchy for atomic orbital energy levels and alignment with the principal and azimuthal quantum numbers. In addition, it construes stable matter as property sets with the highest ratio of twin prime elements. These results provide a new perspective on a mathematical structure that shapes our universe and, if valid, has the structural complexity to guide future research.
文摘It is shown that the fine structure constant at Planck times tends to one as well as those of the weak and strong interactions. This results by constraining them at the Planck force. That seems to provide interesting new results which confirm that at the beginning of space time (Planck scale) all fundamental forces converge to the same unit value.
文摘We proposed an empirical equation for a fine-structure constant: . Then, . where m<sub>p</sub> and m<sub>e</sub> are the rest mass of a proton and the rest mass of an electron, respectively. In this report, using the electrochemical method, we proposed an equivalent circuit. Then, we proposed a refined version of our own old empirical equations about the electromagnetic force and gravity. Regarding the factors of 9/2 and π, we used 3.132011447 and 4.488519503, respectively. The calculated values of T<sub>c</sub> and G are 2.726312 K and 6.673778 × 10<sup>-11</sup> (m<sup>3</sup>⋅kg<sup>-1</sup>⋅s<sup>-2</sup>).
文摘A model for the internal structure of the electron using classical physics equations has been previously published by the author. The model employs both positive and negative charges and positive and negative masses. The internal attributes of the electron structure were calculated for both ring and spherical shapes. Further examination of the model reveals an instability for the ring shape. The spherical shape appears to be stable, but relies on tensile or compressive forces of the electron material for stability. The model is modified in this document to eliminate the dependency on material forces. Uniform stability is provided solely by balancing electrical and centrifugal forces. This stability is achieved by slightly elongating the sphere along the spin axis to create a prolate ellipsoid. The semi-major axis of the ellipsoid is the spin axis of the electron, and is calculated to be 1.20% longer than the semi-minor axis, which is the radius of the equator. Although the shape deviates slightly from a perfect sphere, the electric dipole moment is zero. In the author’s previously published document, the attributes of the internal components of the electron, such as charge and mass, were calculated and expressed as ratios to the classically measured values for the composite electron. It is interesting to note that all of these ratios are nearly the same as the inverse of the Fine Structure Constant, with differences of less than 15%. The electron model assumed that the outer surface charge was fixed and uniform. By allowing the charge to be mobile and the shape to have a particular ellipticity, it is shown that the calculated charge and mass ratios for the model can be exactly equal to the Fine Structure Constant and the Constant plus one. The electron radius predicted by the model is 15% greater than the Classical Electron Radius.
文摘In this paper, we delve into the intrinsic nature of mass and gravity, as per the amplitude modulation interpretation of the quantum theory. We explore the idea that the elementary constituent is an electromagnetic configuration that interacts with the quantum field, leading to the emergence of inertia and gravity as a reaction to the exchange with the quantum field. While these two phenomena have a common origin, they are distinct. Our proposal suggests manipulating the connection between the quantum field and the particle using high-frequency electromagnetic fields, thereby making a warp drive possible.
文摘Gravity is the only force that cannot be explained by the Standard Model (SM), the current best theory describing all the known fundamental particles and their forces. Here we reveal that gravitational force can be precisely given by mass of objects and microwave background (CMB) radiation. Moreover, using the same strategy we reveal a relation by which CMB can also precisely define fine-structure constant α.
文摘The equations for energy, momentum, frequency, wavelength and also Schr?dinger equation of the electromagnetic wave in the atom are derived using the model of atom by analogy with the transmission line. The action constant A0 = (μ0/ε0)1/2s02e2 is a key term in the above mentioned equations. Besides the other well-known quantities, the only one unknown quantity in the last expression is a structural constant s0. Therefore, this article is dedicated to the calculation of the structural constant of the atoms on the basis of the above mentioned model. The structural constant of the atoms s0 = 8.277 56 shows up as a link between macroscopic and atomic world. After calculating this constant we get the theory of atoms based on Maxwell’s and Lorentz equations only. This theory does not require Planck constant h, which once was introduced empirically. Replacement for h is the action constant A0, which is here theoretically derived, while the replacement for fine structure constant α is 1/(2s02). In this way, the structural constant s0 replaces both constants, h and α. This paper also defines the stationary states of atoms and shows that the maximal atomic number is equal to 2s02 = 137.036, i.e., as integer should be Zmax=137. The presented model of the atoms covers three of the four fundamental interactions, namely the electromagnetic, weak and strong interactions.
文摘A century ago the classical physics couldn’t explain many atomic physical phenomena. Now the situation has changed. It’s because within the framework of classical physics with the help of Maxwell’s equations we can derive Schrödinger’s equation, which is the foundation of quantum physics. The equations for energy, momentum, frequency and wavelength of the electromagnetic wave in the atom are derived using the model of atom by analogy with the transmission line. The action constant A0 = (μ0/ε0)1/2s02e2 is a key term in the above mentioned equations. Besides the other well-known constants, the only unknown constant in the last expression is a structural constant of the atom s0. We have found that the value of this constant is 8.277 56 and that it shows up as a link between macroscopic and atomic world. After calculating this constant we get the theory of atoms based on Maxwell’s and Lorentz equations only. This theory does not require knowledge of Planck’s constant h, which is replaced with theoretically derived action constant A0, while the replacement for the fine structure constant α-1 is theoretically derived expression 2s02 = 137.036. So, the structural constant s0 replaces both constants h and α. This paper also defines the stationary states of atoms and shows that the maximal atomic number is equal to Zmax = 137. The presented model of the atoms covers three of the four fundamental interactions, namely the electromagnetic, weak and strong interactions.