期刊文献+
共找到98篇文章
< 1 2 5 >
每页显示 20 50 100
聚变堆低活化马氏体钢的发展 被引量:88
1
作者 黄群英 郁金南 +2 位作者 万发荣 李建刚 吴宜灿 《核科学与工程》 CSCD 北大核心 2004年第1期56-64,35,共10页
介绍了国际聚变堆低活化结构材料发展概况及趋势,以及国内发展自己特有的低活化马氏体钢的必要性。介绍了聚变堆结构材料——低活化铁素体/马氏体钢发展的必要性及迫切性,以及目前国际上包括欧洲、日本、美国等在此方面研究的进展概况... 介绍了国际聚变堆低活化结构材料发展概况及趋势,以及国内发展自己特有的低活化马氏体钢的必要性。介绍了聚变堆结构材料——低活化铁素体/马氏体钢发展的必要性及迫切性,以及目前国际上包括欧洲、日本、美国等在此方面研究的进展概况及发展趋势,最后提出了国内发展自己特有的低活化马氏体钢——CLAM钢的必要性,并对目前的研究进展情况做了介绍。 展开更多
关键词 聚变堆 结构材料 低活化 铁素体/马氏体钢
下载PDF
Microstructures and mechanical properties of friction stir welds on 9% Cr reduced activation ferritic/martensitic steel 被引量:13
2
作者 Chao Zhang Lei Cui +2 位作者 Yongchang Liu Chenxi Liu Huijun Li 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2018年第5期756-766,共11页
In this study,the microstructures and mechanical properties of 9%Cr reduced activation ferritic/martensitic(RAFM) steel friction stir welded joints were investigated.When a W-Re tool is used,the recommended welding ... In this study,the microstructures and mechanical properties of 9%Cr reduced activation ferritic/martensitic(RAFM) steel friction stir welded joints were investigated.When a W-Re tool is used,the recommended welding parameters are 300 rpm rotational speed,60 mm/min welding speed and10 kn axial force.In stir zone(SZ),austenite dynamic recrystallization induced by plastic deformation and the high cooling rates lead to an obvious refinement of prior austenite grains and martensite laths.The microstructure in SZ contains lath martensite with high dislocation density,a lot of nano-sized MX and M3C phase particles,but almost no M23C6 precipitates.In thermal mechanically affect zone(TMAZ)and heat affect zone(HAZ),refinement of prior austenite and martensitic laths and partial dissolution of M(23)C6 precipitates are obtained at relatively low rotational speed.However,with the increase of heat input,coarsening of martensitic laths,prior austenite grains,and complete dissolution of M23C6 precipitates are achieved.Impact toughness of SZ at-20℃ is slightly lower than that of base material(BM),and exhibits a decreasing trend with the increase of rotational speed. 展开更多
关键词 Friction stir welding Reduced activation ferritic/martensitic steel Microstructure evolution Impact toughness
原文传递
An Aluminide Surface Layer Containing Lower-Al on Ferritic-Martensitic Steel Formed by Lower-Temperature Aluminization 被引量:7
3
作者 S.Guo Z.B.Wang K.Lu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2015年第12期1268-1273,共6页
An aluminide(AlFe and α-(FeAl)) surface layer containing lower-Al was formed on ferritic-martensitic steel P92 by means of surface mechanical attrition treatment(SMAT) combined with a duplex aluminization proce... An aluminide(AlFe and α-(FeAl)) surface layer containing lower-Al was formed on ferritic-martensitic steel P92 by means of surface mechanical attrition treatment(SMAT) combined with a duplex aluminization process at lower temperatures,i.e.a packed aluminization followed by a diffusion annealing treatment below its tempering temperature.Indentation tests indicated that the lower-Al surface layer formed on the SMAT sample is more resistant to cracking and has better adhesion to the substrate in comparison with the Al 5Fe 2 layer formed on the as-received sample after the duplex aluminization process.Isothermal steam oxidation measurements showed that the oxidation resistance is increased significantly by the lower-Al surface layer due to the formation of a protective(Fe,Cr)Al 2O 4 layer.The rate constant of oxidation was estimated to decrease from-0.849 mg^2 cm^-4h^-1 of the as-received material to^0.011 mg^2 cm^-4 h^-1 of the AlFe layer at 700 ℃. 展开更多
关键词 Surface mechanical attrition treatment (SMAT) ferritic-martensitic steel Lower-temperature aluminization Aluminide Steam oxidation
原文传递
Technical Issues for the Fabrication of a CN-HCCB-TBM Based on RAFM Steel CLF-1 被引量:7
4
作者 王平怀 谌继明 +3 位作者 付海英 刘实 李雄伟 许增裕 《Plasma Science and Technology》 SCIE EI CAS CSCD 2013年第2期133-136,共4页
Reduced activation ferritic/martensitic steel (RAFM) is recognized as the primary candidate structural material for ITER's test blanket module (TBM). To provide a material and property database for the design and... Reduced activation ferritic/martensitic steel (RAFM) is recognized as the primary candidate structural material for ITER's test blanket module (TBM). To provide a material and property database for the design and fabrication of the Chinese helium cooled ceramic breeding TBM (CN HCCB TBM), a type of RAFM steel named CLF-1 was developed and chaxacter^zed at the Southwestern Institute of Physics (SWIP), China. In this paper, the R&D status of CLF-1 steel and the technical issues in using CLF-1 steel to manufacture CN HCCB TBM were reviewed, including the steel manufacture and different welding technologies. Several kinds of property data have been obtained for its application to the design of the ITER TBM. 展开更多
关键词 reduced activation ferritic/martensitic steel ITER TBM FABRICATION fusionreactor
下载PDF
First Results of Characterization of 9Cr-3WVTiTaN Low Activation Ferritic/Martensitic Steel 被引量:6
5
作者 LI Xing-gang YAN Qing-zhi MA Rong WANG Hao-qiang GE Chang-chun 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2010年第5期57-62,共6页
Ferritic/martensitic steels with Cr of 9%-12% (in mass percent) are favourable candidates for fuel cladding tube and in-core components of supercritical water-cooled reactor. 9Cr-3WVTiTaN low activation ferritic/mar... Ferritic/martensitic steels with Cr of 9%-12% (in mass percent) are favourable candidates for fuel cladding tube and in-core components of supercritical water-cooled reactor. 9Cr-3WVTiTaN low activation ferritic/martensitic steel, designated as China Nuclear Steel- I (CNS- I ), was patterned after T91 steel (modified 9Cr-lMo) for the reactor. The idea of low activation material and microalloy technology was introduced into the design of the steel. The hardening, tempering and transformation behaviour of CNS- I steel was investigated. The steel has advantages in tensile properties at elevated temperature relative to zircaloy that has been widely used as cladding material for conventional light water reactors. CNS- I steel exhibits tensile properties and impact toughness comparable to T91 steel which exhibits availability in the present fission reactors and fast breeder reactor but includes undesired radioactive elements such as molybdenum and niobium. 展开更多
关键词 supercritical water-cooled reactor low activation ferritic/martensitic steel tension Charpy impact
原文传递
Microstructure characteristics of 12Cr ferritic/martensitic steels with various yttrium 被引量:6
6
作者 Yingxue Chen Feifei Zhang +2 位作者 Qingzhi Yan Xiaoxin Zhang Zhiyuan Hong 《Journal of Rare Earths》 SCIE EI CAS CSCD 2019年第5期547-554,共8页
12Cr ferritic/martensitic steels with 0, 0.1 wt%, 0.2 wt% and 0.3 wt% theoretical yttrium(Y) additions were fabricated by vacuum inducting melting and casting method. Solubilities of Y in the 12Cr steels are0.027, 0.0... 12Cr ferritic/martensitic steels with 0, 0.1 wt%, 0.2 wt% and 0.3 wt% theoretical yttrium(Y) additions were fabricated by vacuum inducting melting and casting method. Solubilities of Y in the 12Cr steels are0.027, 0.078 and 0.17 for 12Cr-0.1 Y, 12Cr-0.2 Y and 12Cr-0.3 Y, respectively. Phase transformations and microstructure characteristics under different heat-treatment schedules were investigated. The starting temperature of ferrite-to-austenite transformation A^(c1) are maintained about 850℃, but the finishing temperature of ferrite-to-austenite transformation A^(c3) are about 950, 970, 980 and 1000℃ for 12Cr-0 Y,12Cr-0.1 Y, 12Cr-0.2 Y and 12Cr-0.3 Y, respectively, which indicates that A^(c3) increases gradually with the addition of Y. Martensite accompanied with a few δ-ferrite is the dominant structure in all the steels. The amount of δ-ferrite shows a strong dependence with the Y content and austenitizing temperature. Area fraction of δ-ferrite increases with the content of Y, which is the ferrite favouring element. The minimum amount of δ-ferrite are achieved at 950℃ for 12Cr-0 Y, 12Cr-0.1 Y, 12Cr-0.2 Y and 1000℃ for 12Cr-0.3 Y.Besides, more carbides precipitate along the martensite laths and grain boundaries in the Y-bearing steel due to the redistribution of carbon between austenite and ferrite resulting from the ferrite favouring element of Y. 展开更多
关键词 12Cr ferritic/martensitic steel YTTRIUM CASTING Phase TRANSFORMATION Microstructure characteristics RARE earths
原文传递
Precipitate Phases in an 11% Cr Ferritic/Martensitic Steel with Tempering and Creep Conditions 被引量:5
7
作者 Xiao-Ling Zhou Yin-Zhong Shen Zhi-Qiang Xu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2015年第1期48-57,共10页
Precipitates in an 11% Cr ferritic/martensitic steel containing Nd with tempering and creep conditions were investigated using transmission electron microscope with energy-dispersive X-ray spectroscopy. The precipitat... Precipitates in an 11% Cr ferritic/martensitic steel containing Nd with tempering and creep conditions were investigated using transmission electron microscope with energy-dispersive X-ray spectroscopy. The precipitates in the steel with a tempering condition were identified to be Cr-rich M23C6 carbide, Nb-rich/V-rich/Ta–Nb-rich MX carbides, Nbrich MX carbonitride, and Fe-rich M5C2 carbide. Nd-rich carbonitride, which is not known to have been reported previously in steels, was also detected in the steel after tempering. Most of the Nb-rich MX precipitates were dissolved, whereas the amount of Ta-rich MX precipitates was increased significantly in the steel after a creep test at 600 °C at an applied stress of180 MPa for 1,100 h. No Fe2 W Laves phase has been detected in the steel after tempering.(Fe, Cr)2W Laves phase with a relatively large size was observed in the steel after the creep test. 展开更多
关键词 Precipitate phase High-Cr ferritic/martensitic steel High temperature creep Transmission electron microscope
原文传递
Designing a high Si reduced activation ferritic/martensitic steel for nuclear power generation by using Calphad method 被引量:4
8
作者 Chao Liu Quanqiang Shi +4 位作者 Wei Yan Chunguang Shen Ke Yang Yiyin Shan Mingchun Zhao 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2019年第3期266-274,共9页
A high Si reduced activation ferritic/martensitic(RAFM) steel for nuclear structure application is successfully designed by using Calphad method. The main designed chemical composition is C 0.18–0.22%, Cr10.0–10.5%,... A high Si reduced activation ferritic/martensitic(RAFM) steel for nuclear structure application is successfully designed by using Calphad method. The main designed chemical composition is C 0.18–0.22%, Cr10.0–10.5%, W 1.0–1.5%, Si 1.0–1.3%, V+Ta 0.30–0.45%, and Fe in balance. High Si design brings excellent corrosion resistance, while low activation is advantageous in the nuclear waste processing. The experimental results indicate that the newly designed high Si RAFM steel had full martensitic structure and uniformly distributed fine second phase particles, and exhibited excellent mechanical properties and corrosion resistance. Compared to the P91 steel, this new RAFM steel designed by Calphad method is expected to be a promising candidate used in nuclear power generation, which also provides a new and effective approach to the development of RAFM steel for nuclear application. 展开更多
关键词 ferritic/martensitic steel ALLOY design CALPHAD method REDUCED ACTIVATION HIGH silicon
原文传递
Grain boundary engineering for enhancing intergranular damage resistance of ferritic/martensitic steel P92
9
作者 Lei Peng Shang-Ming Chen +6 位作者 Jing-Yi Shi Yong-Jie Sun Yi-Fei Liu Yin-Zhong Shen Hong-Ya He Hui-Juan Wang Jie Tian 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第5期186-199,共14页
Ferritic/martensitic(F/M)steel is widely used as a structural material in thermal and nuclear power plants.However,it is susceptible to intergranular damage,which is a critical issue,under service conditions.In this s... Ferritic/martensitic(F/M)steel is widely used as a structural material in thermal and nuclear power plants.However,it is susceptible to intergranular damage,which is a critical issue,under service conditions.In this study,to improve the resistance to intergranular damage of F/M steel,a thermomechanical process(TMP)was employed to achieve a grain boundary engineering(GBE)microstructure in F/M steel P92.The TMP,including cold-rolling thickness reduction of 6%,9%,and 12%,followed by austenitization at 1323 K for 40 min and tempering at 1053 K for 45 min,was applied to the as-received(AR)P92 steel.The prior austenite grain(PAG)size,prior austenite grain boundary character distribution(GBCD),and connectivity of prior austenite grain boundaries(PAGBs)were investigated.Compared to the AR specimen,the PAG size did not change significantly.The fraction of coincident site lattice boundaries(CSLBs,3≤Σ≤29)and Σ3^(n) boundaries along PAGBs decreased with increasing reduction ratio because the recrystallization fraction increased with increasing reduction ratio.The PAGB connectivity of the 6%deformed specimen slightly deteriorated compared with that of the AR specimen.Moreover,potentiodynamic polarization studies revealed that the intergranular damage resistance of the studied steel could be improved by increasing the fraction of CSLBs along the PAGBs,indicating that the TMP,which involves low deformation,could enhance the intergranular damage resistance. 展开更多
关键词 Grain boundary engineering ferritic/martensitic steel Prior austenite grain boundary character distribution Grain boundary connectivity Intergranular damage resistance
下载PDF
Strengthening mechanisms of reduced activation ferritic/martensitic steels:A review 被引量:6
10
作者 Jin-hua Zhou Yong-feng Shen Nan Jia 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第3期335-348,共14页
This review summarizes the strengthening mechanisms of reduced activation ferritic/martensitic(RAFM)steels.High-angle grain boundaries,subgrain boundaries,nano-sized M_(23)C_(6),and MX carbide precipitates effectively... This review summarizes the strengthening mechanisms of reduced activation ferritic/martensitic(RAFM)steels.High-angle grain boundaries,subgrain boundaries,nano-sized M_(23)C_(6),and MX carbide precipitates effectively hinder dislocation motion and increase high-temperature strength.M23C6 carbides are easily coarsened under high temperatures,thereby weakening their ability to block dislocations.Creep properties are improved through the reduction of M23C6 carbides.Thus,the loss of strength must be compensated by other strengthening mechanisms.This review also outlines the recent progress in the development of RAFM steels.Oxide dispersion-strengthened steels prevent M23C6 precipitation by reducing C content to increase creep life and introduce a high density of nano-sized oxide precipitates to offset the reduced strength.Severe plastic deformation methods can substantially refine subgrains and MX carbides in the steel.The thermal deformation strengthening of RAFM steels mainly relies on thermo-mechanical treatment to increase the MX carbide and subgrain boundaries.This procedure increases the creep life of TMT(thermo-mechanical treatment)9Cr-1W-0.06Ta steel by~20 times compared with those of F82H and Eurofer 97 steels under 550℃/260 MPa. 展开更多
关键词 reduced activation ferritic/martensitic steel strengthening mechanism high-angle grain boundary subgrain boundary PRECIPITATE
下载PDF
Hot Deformation Behavior of a New Nuclear Use Reduced Activation Ferritic/Martensitic Steel 被引量:3
11
作者 Chao Liu Ming-Chun Zhao +5 位作者 Tuguldur Unenbayar Ying-Chao Zhao Bin Xie Yan Tian Yi-Yin Shan Ke Yang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2019年第7期825-834,共10页
The hot deformation behavior and workability of a new reduced activation ferritic/martensitic steel named SIMP steel for accelerator-driven system were studied. The flow curve and its microstructure were studied at 90... The hot deformation behavior and workability of a new reduced activation ferritic/martensitic steel named SIMP steel for accelerator-driven system were studied. The flow curve and its microstructure were studied at 900-1200 ℃ and strain rate range of 0.001-10 s^-1. The results showed that the deformation behavior of the SIMP steel during hot compression could be manifested by the Zener-Hollomon parameter in an exponent-type equation. Based on the obtained constitutive equation, the calculated flow stresses were in agreement with the experimentally measured ones, and the average activity energies Qdrv and QHw for the initiation of dynamic recrystallization and the peak strain were calculated to be 476.1 kJ/mol and 462.7 kJ/mol, respectively. Furthermore, based on the processing maps and microstructure evolution, the optimum processing condition for the SIMP steel was determined to be 1050-1200 ℃/0.001-0.1s^-1. 展开更多
关键词 REDUCED ACTIVATION ferritic/martensitic steel HOT deformation Flow CURVE CONSTITUTIVE equation Processing map
原文传递
Overview of the Research and Development for Reduced Activation Ferritic/Martensitic Steel CLF-1 被引量:3
12
作者 WANG Pinghuai XU Zengyu +2 位作者 CHEN Jiming LIU Shi LI Xiongwei 《Southwestern Institute of Physics Annual Report》 2006年第1期162-163,共2页
Recent accomplishment by the SWIP for the reduced activation ferritic/martensitic steel CLF-1 development has been reviewed. It's found that CLF- 1 steel has better room temperature tensile properties than Eurofer97 ... Recent accomplishment by the SWIP for the reduced activation ferritic/martensitic steel CLF-1 development has been reviewed. It's found that CLF- 1 steel has better room temperature tensile properties than Eurofer97 steel and has a fully martensitic microstructure. 展开更多
关键词 Reduced activation ferritic/martensitic steel Tensile properties Fully martensitic microstructure
下载PDF
Effects of Orthogonal Heat Treatment on Microstructure and Mechanical Properties of GN9 Ferritic/Martensitic Steel
13
作者 Tingwei Ma Xianchao Hao Ping Wang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第6期289-300,共12页
Microstructure and mechanical properties of GN9 Ferritic/Martensitic steel for sodium-cooled fast reactors have been investigated through orthogonal design and analysis.Scanning electron microscopy(SEM),transmission e... Microstructure and mechanical properties of GN9 Ferritic/Martensitic steel for sodium-cooled fast reactors have been investigated through orthogonal design and analysis.Scanning electron microscopy(SEM),transmission electron microscopy(TEM),differential scanning calorimeter(DSC),tensile and impact tests were used to evaluate the heat treatment parameters on yield strength,elongation and ductile-to-brittle transition temperature(DBTT).The results indicate that the microstructures of GN9 steel after orthogonal heat treatments consist of tempered martensite,M23C6,MX carbides and MX carbonitrides.The average prior austenite grains increase and the lath width decreases with the austenitizing temperature increasing from 1000°C to 1080°C.Tempering temperature is the most important factor that influences the dislocation evolution,yield strength and elongation compared with austenitizing tempera-ture and cooling methods.Austenitizing temperature,tempering temperature and cooling methods show interactive effects on DBTT.Carbide morphology and distribution,which is influenced by austenitizing and tempering tempera-tures,is the critical microstructural factor that influences the Charpy impact energy and DBTT.Based on the orthogo-nal design and microstructural analysis,the optimal heat treatment of GN9 steel is austenitizing at 1000°C for 0.5 h followed by air cooling and tempering at 760°C for 1.5 h. 展开更多
关键词 ferritic/martensitic steel Orthogonal design M23C6 carbide Ductile-to-brittle transition temperature
下载PDF
Corrosion Behavior of Ferritic/Martensitic Steels CNS-Ⅰ and Modified CNS-Ⅱ in Supercritical Water 被引量:1
14
作者 YANG Ying YAN Qing-zhi +2 位作者 YANG Ya-feng ZHANG Le-fu GE Chang-chun 《Journal of Iron and Steel Research International》 SCIE CAS CSCD 2012年第5期69-73,36,共6页
The corrosion behaviors of CNS-I and modified CNS-II were evaluated by exposing to superciritical water (SCW) at 550℃ and 25 MPa with a dissolved oxygen concentration of 200× 10 ^-9 for up to 1 000 h. Detailed... The corrosion behaviors of CNS-I and modified CNS-II were evaluated by exposing to superciritical water (SCW) at 550℃ and 25 MPa with a dissolved oxygen concentration of 200× 10 ^-9 for up to 1 000 h. Detailed corrosion results of these two alloys were provided, including the growth rate of the oxide scales, microstructure of the oxide scales, distribution of phases and alloying elements. The mass gains of CNS-I and modified CNS-II were 609.73 mg/dm2 and 459.42 mg/dm2 , respectively, after exposing to SCW for 1 000 h. A duplex oxide scale with an outer porous magnetite layer and an inner relatively dense magnetite/spinel-mixed layer was identified on CNS-I and modified CNS-II after the test. The oxide scales were rather porous at the beginning of the test but the porosity decreased with increase of the exposure duration. It was found that Fe was enriched in the outer oxide layer, Cr was enriched in the inner oxide layer and O existed at a very high concnetration in the whole oxide scale. Other alloying elements such as Mo, W, Mn were depleted from the outer oxide layer and showed slightly enrichment in the inner oxide layer. The distributution of Ni was different from other elements, it was enriched in the interface bewteen the base metal and the oxide scale and depleted in the outer and inner oxide layers. 展开更多
关键词 ferritic/martensitic steel supercritical water corrosion kinetics oxide scale morphology and structure
原文传递
Oxidation behavior of ferritic/martensitic steels in flowing supercritical water 被引量:3
15
作者 Quanqiang Shi Wei Yan +4 位作者 Yanfen Li Naiqiang Zhang Yiyin Shan Ke Yang Hiroaki Abe 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第5期114-125,共12页
The oxidation behavior of two Ferritic/Martensitic(F/M)steels including novel SIMP steel and commercial P91 steel were investigated by exposure to flowing deaerated supercritical water(SCW)at 700℃for up to 1000 h.The... The oxidation behavior of two Ferritic/Martensitic(F/M)steels including novel SIMP steel and commercial P91 steel were investigated by exposure to flowing deaerated supercritical water(SCW)at 700℃for up to 1000 h.The kinetic weight gain curves follow parabolic and near-cubic rate equations for SIMP and P91 steels,respectively.X-Ray Diffraction analysis showed the presence of magnetite and a spinel phase in flowing SCW for both steels.The morphology and structure of the oxide scales formed on these two steels were analyzed.The relationship between the microstructure and oxidation behavior and the reason that SIMP steel showed better oxidation resistance than P91 steel were discussed. 展开更多
关键词 ferritic/martensitic steel Supercritical water OXIDATION Oxide scale SIMP steel
原文传递
Effect of Heat Treatment Process on Mechanical Properties and Microstructure of Modified CNS-ⅡF/M Steel
16
作者 YANG Ying YAN Qing-zhi MA Rong GE Chang-chun 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2011年第12期65-70,共6页
Ferritic/martensitic(F/M) steels have been recommended as one of the candidate materials for supercritical water cooled reactor(SCWR) in-core components use for its high thermal conductivity,low thermal expansion ... Ferritic/martensitic(F/M) steels have been recommended as one of the candidate materials for supercritical water cooled reactor(SCWR) in-core components use for its high thermal conductivity,low thermal expansion coefficient and inherently good dimensional stability under irradiation condition in comparison to austenitic steel.CNS-Ⅱ F/M steel which has good mechanical properties was one of the 9-12Cr F/M steels designed for SCWR in the previous work.In this study a modified CNS-Ⅱ F/M steel was used and it's ultimate tensile strength was 925 MPa at room temperature and 483 MPa at 600 ℃ after optimizing heat treatment parameter.The ductile to brittle transition temperature of modified CNS-Ⅱ F/M steel is-55 ℃.Those are at the same level or even higher than that of CNS-Ⅱ and some commercial F/M steels nominated for SCWR in-core component use.The transmission electron microscope(TEM) results showed that the mechanical properties of the tempered martensite was closely related to the decomposition stage of the martensite. 展开更多
关键词 supercritical water reactor ferritic/martensitic steel cladding material
原文传递
Embrittlement effects on ferritic/martensitic steels by liquid lead-bismuth eutectic
17
作者 高雯 LONG Bin DAI Yong 《Journal of Chongqing University》 CAS 2013年第4期163-169,共7页
Studies of synergetic irradiation effects and liquid lead-bismuth eutectic(LBE) corrosion/embrittlement effects on ferritic/martensitic(F/M) steels are of great importance for developing high power spallation neutron ... Studies of synergetic irradiation effects and liquid lead-bismuth eutectic(LBE) corrosion/embrittlement effects on ferritic/martensitic(F/M) steels are of great importance for developing high power spallation neutron targets(>1 M W) such as the European Spallation Source(ESS) and Accelerator Driven System(ADS) facilities that can be used for transmuting long-lifetime radioactive wastes. Liquid LBE(45Pb-55Bi,in terms of mass fraction) has been selected as the candidate target material in high power spallation neutron targets due to its favourable thermal,physical & chemical properties,and to its high spallation neutron yield. 9Cr F/M steels such as T91(9Cr1M oVNb,in terms of mass fraction) have been chosen as the structural material for the targets due to their good mechanical properties and good resistance to irradiation induced swelling in fission neutron irradiation environments. For developing high power spallation neutron targets,behaviors of F/M steels in spallation neutron target irradiation environments and LBE corrosion/embrittlement effects have been extensively studied. However,many open questions have not been answered. The aim of this paper is to describe the present research situation on this topic. The obtained experimental data about LBE embrittlement effects on F/M steels is summarized and the influence of different parameters involved is analyzed to understand the influence effect on LBE embrittlement effect of F/M s. 展开更多
关键词 lead-bismuth eutectic T91 ferritic/martensitic EMBRITTLEMENT
下载PDF
Mechanical property and irradiation damage of China Low Activation Martensitic(CLAM) steel 被引量:2
18
作者 ZHU YanYong WAN FaRong +8 位作者 GAO Jin HAN WenTuo HUANG YiNa JIANG ShaoNing QIAO JianSheng ZHAO Fei YANG ShanWu OHNUKI Somei HASHIMOTO Naoyuki 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2012年第11期2057-2061,共5页
China Low Activation Martensitic (CLAM) steel is being studied to develop the structural materials for a fusion reactor, which has been designed based on the well-known 9Crl.5WVTa steel. The effect of tempering temp... China Low Activation Martensitic (CLAM) steel is being studied to develop the structural materials for a fusion reactor, which has been designed based on the well-known 9Crl.5WVTa steel. The effect of tempering temperature on hardness and micro- structure of CLAM steel was studied. The strength of CLAM steel increased by adding silicon, and the ductility remained con- stant. Conversely, while CLAM steel maintained good ductility with the addition of yttrium, its tensile strengths were greatly degraded. Behaviors under electron irradiation of CLAM steel were examined using the high voltage electron microscope. Electron irradiation at 450℃ formed many voids in CLAM steel with basic composition, whereas CLAM with silicon steel did not change the microstructure significantly. 展开更多
关键词 low activation ferritic/martensitic steel mechanical property electron irradiation irradiation damage SILICON YTTRIUM
原文传递
Experimental and theoretical analysis of equilibrium segregation and radiation-induced segregation of Cr at grain boundariesin a reduced activation ferritic/martensitic(RAFM)steel 被引量:1
19
作者 Li-dong Xia Hao Chen +1 位作者 Zhi-gang Yang Chi Zhang 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2021年第4期445-452,共8页
Helium ion irradiation at 350℃was performed to study equilibrium segregation and radiation-induced segregation(RIS)of Cr at grain boundaries in reduced activation ferritic/martensitic steels.Cr concentration at grain... Helium ion irradiation at 350℃was performed to study equilibrium segregation and radiation-induced segregation(RIS)of Cr at grain boundaries in reduced activation ferritic/martensitic steels.Cr concentration at grain boundary was measured by scanning transmission electron microscopy with an energy-dispersive spectrometer.The measured Cr concentration at grain boundaries in heat treated zone was 11.7 and 12.8 wt.%in irradiated zone,respectively,which matched well to the calculated results from Mclean and modified Perk model.Equilibrium segregation and RIS of Cr mechanisms were theoretically analysed.The analysis indicates that as temperature rises,equilibrium Cr segregation decreases monotoni-cally,while RIS of Cr has a bell-shape profile,which increases first and then decreases.It is also shown that at low and high temperatures,equilibrium segregation of Cr is higher than that of RIS;at intermediate temperatures,equilibrium Cr segregation is lower than RIS. 展开更多
关键词 Reduced activation ferritic/martensitic steel Equilibrium Cr segregation Radiation-induced segregation Grain boundary Rate theory Mclean equation
原文传递
Yield Stress Prediction Model of RAFM Steel Based on the Improved GDM-SA-SVR Algorithm
20
作者 Sifan Long Ming Zhao Xinfu He 《Computers, Materials & Continua》 SCIE EI 2019年第3期727-760,共34页
With the development of society and the exhaustion of fossil energy,researcher need to identify new alternative energy sources.Nuclear energy is a very good choice,but the key to the successful application of nuclear ... With the development of society and the exhaustion of fossil energy,researcher need to identify new alternative energy sources.Nuclear energy is a very good choice,but the key to the successful application of nuclear technology is determined primarily by the behavior of nuclear materials in reactors.Therefore,we studied the radiation performance of the fusion material reduced activation ferritic/martensitic(RAFM)steel.The main novelty of this paper are the statistical analysis of RAFM steel data sets through related statistical analysis and the formula derivation of the gradient descent method(GDM)which combines the gradient descent search strategy of the Convex Optimization Theory to get the best value.Use GDM algorithm to upgrade the annealing stabilization process of simulated annealing algorithm.The yield stress performance of RAFM steel is successfully predicted by the hybrid model which is combined by simulated annealing(SA)with support vector machine(SVM)as the first time.The effect on yield stress by the main physical quantities such as irradiation temperature,irradiation dose and test temperature is also analyzed.The related prediction process is:first,we used the improved annealing algorithm to optimize the SVR model after training the SVR model on a training data set.Next,we established the yield stress prediction model of RAFM steel.The model can predict up to 96%of the data points with the prediction in the test set and the original data point in the 2range.The statistical test analysis shows that under the condition of confidence level=0.01,the calculation results of the regression effect significance analysis pass the T-test. 展开更多
关键词 Convex optimization theory simulated annealing algorithm reduced activation ferritic/martensitic steel support vector regression.
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部